Sexta-feira, 5 de Junho de 2009

Paradoxo EPR

Na mecânica quântica, o paradoxo EPR ou Paradoxo de Einstein-Podolsky-Rosen é um experimento mental que demonstra que o resultado de uma medição realizada em uma parte do sistema quântico pode ter um efeito instantâneo no resultado de uma medição realizada em outra parte, independentemente da distância que separa as duas partes. Isto vai de encontro aos princípios da relatividade especial, que estabelece que a informação não pode ser transmitida mais rapidamente que a velocidade da luz. "EPR" vem das iniciais de Albert Einstein, Boris Podolsky, e Nathan Rosen, que apresentaram este experimento mental em um trabalho em 1935 que buscava demonstrar que a mecânica quântica não é uma teoria física completa. É algumas vezes denominado como paradoxo EPRB devido a David Bohm, que converteu o experimento mental inicial em algo próximo a um experimento viável.

O EPR é um paradoxo no seguinte sentido: se se tomar a mecânica quântica e a ela adicionar uma condição aparentemente razoável (tal como "localidade", "realismo" ou "inteireza"), obtém-se uma contradição. Porém, a mecânica quântica por si só não apresenta nenhuma inconsistência interna, nem — como isto poderia sugerir — contradiz a teoria relativística. Como um resultado de desenvolvimentos teóricos e experimentais seguintes ao trabalho original da EPR, a maioria dos físicos atuais concorda que o paradoxo EPR é um exemplo de como a mecânica quântica viola o ponto de vista esperado na clássica, e não como uma indicação de que a mecânica quântica seja falha e sim inaplicável ao meio.


Descrição do paradoxo

O paradoxo EPR apóia-se em um fenômeno predito pela mecânica quântica e conhecido como entrelaçamento quântico, que mostra que medições realizadas em partes separadas de um sistema quântico influenciam-se mutuamente. Este efeito é atualmente conhecido como "comportamento não local" (ou, coloquialmente, como "estranheza quântica"). De forma a ilustrar isto, considere a seguinte versão simplificada do experimento mental EPR devido a Bohm.

Medições em um estado de entrelaçamento

Tem-se uma fonte emissora de pares de elétrons, com um elétron enviado para o destino A, onde existe uma observadora chamada Alice, e outro enviado para o destino B, onde existe um observador chamado Bob. De acordo com a mecânica quântica, podemos arranjar nossa fonte de forma tal que cada par de elétrons emitido ocupe um estado quântico conhecido como spin singlet. Isto pode ser visto como uma superposição quântica de dois estados; sejam eles I e II. No estado I, o elétron A tem spin apontado para cima ao longo do eixo z (+z) e o elétron B tem seu spin apontando para baixo ao longo do mesmo eixo (-z). No estado II, o elétron A tem spin -z e o elétron B, +z. Portanto, é impossível associar qualquer um dos elétrons em um spin singlet, com um estado definido de spin. Os elétrons estão, portanto, no chamado entrelaçamento.

Alice mede neste momento o spin no eixo z. Ela pode obter duas possíveis respostas: +z ou -z. Suponha que ela obteve +z. De acordo com a mecânica quântica, o estado quântico do sistema colapsou para o estado I. (Diferentes interpretações da mecânica quântica têm diferentes formas de dizer isto, mas o resultado básico é o mesmo). O estado quântico determina a probabilidade das respostas de qualquer medição realizada no sistema. Neste caso, se Bob a seguir medir o spin no eixo z, ele obterá -z com 100% de certeza. Similarmente, se Alice obtiver -z, Bob terá +z.

Não há, certamente, nada de especial quanto à escolha do eixo z. Por exemplo, suponha que Alice e Bob agora decidam medir o spin no eixo x. De acordo com a mecânica quântica, o estado do spin singlet deve estar exprimido igualmente bem como uma superposição dos estados de spin orientados na direção x. Chamemos tais estados de Ia e IIa. No estado Ia, o elétron de Alice tem o spin +x e o de Bob, -x. No estado IIa, o elétron de Alice tem spin -x e o de Bob, +x. Portanto, se Alice mede +x, o sistema colapsa para Ia e Bob obterá -x. Por outro lado, se Alice medir -x, o sistema colapsa para IIa e Bob obterá +x.

Em mecânica quântica, o spin x e o spin z são "observáveis incompatíveis", que significa que há um principio da incerteza de Heisenberg operando entre eles: um estado quântico não pode possuir um valor definido para ambas as variáveis. Suponha que Alice meça o spin z e obtenha +z, com o estado quântico colapsando para o estado I. Agora, ao invés de medir o spin z também, suponha que Bob meça o spin x. De acordo com a mecânica quântica, quando o sistema está no estado I, a medição do spin x de Bob terá uma probabilidade de 50% de produzir +x e 50% de -x. Além disso, é fundamentalmente impossível predizer qual resultado será obtido até o momento que Bob realize a medição.

Incidentalmente, embora tenhamos usado o spin como exemplo, muitos tipos de quantidades físicas — que a mecânica quântica denomina como "observáveis" — podem ser usados para produzir entrelaçamento quântico. O artigo original de EPR usou o momento como observável. Experimentos atuais abordando o contexto de EPR frequentemente usam a polarização de fótons, porque são experiências mais fáceis de se preparar e medir.

Realidade e integridade

Introduziremos agora dois novos conceitos usados por Einstein, Podolsky, e Rosen, que são cruciais em seu ataque à mecânica quântica: (i) os elementos da realidade física e (ii) a integridade de uma teoria física.

Os autores não se referem diretamente ao significado filosófico de um "elemento da realidade física". Ao invés disso, assumem que se o valor de qualquer quantidade física de um sistema pode ser predito com absoluta certeza antes de se realizar uma medição ou, em outras palavras, perturbando-o, então tal valor corresponde a um elemento da realidade física. Note que o oposto não é necessariamente verdadeiro; poderia haver outros caminhos para existir elementos da realidade física, mas isto não afeta o argumento.

A seguir, EPR definiu uma "teoria física completa" como aquela na qual cada elemento da realidade física tem relevância. O objetivo deste artigo era mostrar, usando estas duas definições, que a mecânica quântica não é uma teoria física completa.

Vejamos como estes conceitos se aplicam para o experimento mental acima. Suponha que Alice decida medir o valor do spin no eixo z (chamemo-no de spin z.) Depois de Alice realizar sua medição, o spin z do elétron de Bob é definitivamente conhecido, de forma que torna-se um elemento da realidade física. De modo similar, se Alice decide medir o spin no eixo x, o spin x do elétron de Bob torna-se um elemento da realidade física logo após a medição por Alice.

Vimos que um estado quântico não pode possuir um valor definido para ambos eixos, x e z. Se a mecânica quântica é uma teoria física completa no sentido dado acima, os spin x e z não podem ser elementos da mesma realidade ao mesmo tempo. Isto significa que a decisão de Alice — de escolher se faz a medição no eixo x ou z — tem um efeito instantâneo nos elementos da realidade física na localidade de Bob. Contudo, isto viola outro princípio, o da localidade.

Localidade no experimento EPR

O princípio da localidade estabelece que processos físicos ocorrendo em um determinado lugar não devem ter um efeito imediato em elementos da realidade em outro local. À primeira vista, isto parece ser uma presunção aceitável, já que parece ser uma conseqüência da relatividade especial, que estabelece que a informação nunca pode ser transmitida mais rapidamente que a velocidade da luz sem violar o princípio da causalidade. É uma crença geral que qualquer teoria que viole o princípio da causalidade deve possuir uma inconsistência interna.

Ou seja, a mecânica quântica viola o princípio da localidade, mas não o princípio da causalidade. A causalidade é preservada porque não há forma de Alice transmitir mensagens (isto é, informação) a Bob pela interferência na escolha do eixo. Qualquer que seja o eixo que ela use, a probabilidade é de 50% de se obter "+" e 50% de se obter "-", de forma completamente aleatória; de acordo com a mecânica quântica, é fundamentalmente impossível para ela influenciar o resultado que ela obterá. Além disso, Bob é somente capaz de realizar sua medição uma única vez: há uma propriedade fundamental da mecânica quântica, conhecida como o "teorema anticlonagem", que torna impossível a Bob fazer um milhão de cópias do elétron por ele recebido, realizar uma medição de spin em cada elétron, e estudar a distribuição estatística dos resultados. Portanto, na única medição que lhe é permitido fazer, há uma probabilidade de 50% de obter "+" e 50% de "-", independente se o eixo escolhido está alinhado de acordo com o de Alice.

Porém, o princípio da localidade apóia-se muito na intuição, e Einstein, Podolsky e Rosen não puderam abandoná-la. Einstein brincou, dizendo que as predições na mecânica quântica eram "estranhas ações a distância". A conclusão que eles esboçaram era a de que a mecânica quântica não é uma teoria completa.

Deve-se notar que a palavra localidade tem vários significados na Física. Por exemplo, na teoria quântica de campo, "localidade" significa que os campos quânticos em diferentes pontos no espaço não interagem entre si. Porém, teorias de campo quântico que são "locais" neste sentido violam o princípio da localidade como definido por EPR.

Resolvendo o paradoxo

Variáveis ocultas

Há vários possíveis caminhos para se resolver o paradoxo EPR. Um deles, sugerido por EPR, é que a mecânica quântica, a despeito do seu sucesso em uma ampla variedade de contextos experimentais, é ainda uma teoria incompleta. Em outras palavras, há ainda uma teoria natural a ser desvendada, à qual a mecânica quântica age no papel de uma aproximação estatística (uma excelente aproximação, sem dúvida). Diferente da mecânica quântica, esta teoria mais completa conteria variáveis correspondentes a todos os "elementos da realidade". Deve haver algum mecanismo desconhecido atuando nestas variáveis de modo a ocasionar os efeitos observados de "não-comutação dos observáveis quânticos", isto é, o princípio da incerteza de Heisenberg. Tal teoria é conhecida como teoria das variáveis ocultas.

Para ilustrar esta idéia, podemos formular uma teoria de variável oculta bem simples para o experimento mental anterior. Supõe-se que o estado do spin singlet emitido pela fonte é na verdade uma descrição aproximada do "verdadeiro" estado físico, com valores definidos para o spin z e o spin x. Neste estado "verdadeiro", o elétron que vai para Bob sempre tem valor de spin oposto ao do elétron que vai para Alice, mas, por outro lado, os valores são completamente aleatórios. Por exemplo, o primeiro par emitido pela fonte poderia ser "(+z, -x) para Alice e (-z, +x) para Bob", o próximo par "(-z, -x) para Alice e (+z, +x) para Bob", e assim por diante. Dessa forma, se o eixo de medição de Bob estiver alinhado com o de Alice, ele necessariamente obterá sempre o oposto daquilo que Alice obtiver; por outro lado, ele terá "+" e "-" com a mesma probabilidade.

Assumindo que restrinjamo-nos a medir nos eixos z e x, a teoria de variáveis ocultas é experimentalmente indistinguível da mecânica quântica. Na realidade, certamente, há um (incontável) número de eixos nos quais Alice e Bob podem realizar suas medições, de forma que haverá infinito número de variáveis ocultas independentes! Contudo, isto não é um problema sério; apenas formulamos uma teoria de variáveis ocultas muito simplista; uma teoria mais sofisticada poderia "consertá-la". Ou seja, ainda há um grande desafio por vir à idéia de variáveis ocultas.

Desigualdade de Bell

Em 1964, John Bell mostrou que as predições da mecânica quântica no experimento mental de EPR são sempre ligeiramente diferentes das predições de uma grande parte das teorias de variáveis ocultas. Grosseiramente falando, a mecânica quântica prediz uma correlação estatística ligeiramente mais forte entre os resultados obtidos em diferentes eixos do que o obtido pelas teorias de variáveis ocultas. Estas diferenças, expressas através de relações de desigualdades conhecidas como "desigualdades de Bell", são em princípio detectáveis experimentalmente. Para uma análise mais detalhada deste estudo, veja teorema de Bell.

Depois da publicação do trabalho de Bell, inúmeros experimentos foram idealizados para testar as desigualdades de Bell. (Como mencionado acima, estes experimentos geralmente baseiam-se na medição da polarização de fótons). Todos os experimentos feitos até hoje encontraram comportamento similar às predições obtidas da mecânica quântica padrão.

Porém, este campo ainda não está completamente definido. Antes de mais nada, o teorema de Bell não se aplica a todas as possíveis teorias "realistas". É possível construir uma teoria que escape de suas implicações e que são, portanto, indistinguíveis da mecânica quântica; porém, estas teorias são geralmente não-locais — parecem violar a casualidade e as regras da relatividade especial. Alguns estudiosos neste campo têm tentado formular teorias de variáveis ocultas que exploram brechas nos experimentos atuais, tais como brechas nas hipóteses feitas para a interpretação dos dados experimentais. Todavia, ninguém ainda conseguiu formular uma teoria realista localmente que possa reproduzir todos os resultados da mecânica quântica.

Implicações para a mecânica quântica

A maioria dos físicos atualmente acredita que a mecânica quântica é correta, e que o paradoxo EPR é somente um "paradoxo" porque a intuição clássica não corresponde à realidade física. Várias conclusões diferentes podem ser esboçadas a partir desta, dependendo de qual interpretação de mecânica quântica se use. Na velha interpretação de Copenhague, conclui-se que o principio da localidade não se aplica e que realmente ocorrem colapsos da função de onda. Na interpretação de muitos mundos, a localidade é preservada, e os efeitos da medição surgem da separação dos observadores em diferentes "históricos".

O paradoxo EPR aprofundou a nossa compreensão da mecânica quântica pela exposição de características não-clássicas do processo de medição. Antes da publicação do paradoxo EPR, uma medição era freqüentemente visualizada como uma perturbação física que afetava diretamente o sistema sob medição. Por exemplo, quando se media a posição de um elétron, imaginava-se o disparo de uma luz nele, que afetava o elétron e que produzia incertezas quanto a sua posição. Tais explicações, que ainda são encontradas em explicações populares de mecânica quântica, foram revisadas pelo paradoxo EPR, o qual mostra que uma "medição" pode ser realizada em uma partícula sem perturbá-la diretamente, pela realização da medição em uma partícula entrelaçada distante.

Tecnologias baseadas no entrelaçamento quântico estão atualmente em desenvolvimento. Na criptografia quântica, partículas entrelaçadas são usadas para transmitir sinais que não podem ser vazados sem deixar traços. Na computação quântica, partículas entrelaçadas são usadas para realizar cálculos em paralelo em computadores, o que permite que certos cálculos sejam realizados mais rapidamente do que um computador clássico jamais poderia fazer.

Marcadores: , , ,

Entrelaçamento quântico

O entrelaçamento quântico ou emaranhamento quântico é um fenômeno da mecânica quântica que permite que dois ou mais objetos estejam de alguma forma tão ligados que um objeto não possa ser corretamente descrito sem que a sua contra-parte seja mencionada - mesmo que os objetos possam estar espacialmente separados. Isso leva a correlações muito fortes entre as propriedades físicas observáveis dos diversos sub-sistemas.

Essas fortes correlações fazem com que as medidas realizadas num sistema pareçam estar a influenciar instantaneamente outros sistemas que estão emaranhados com ele, e sugerem que alguma influência estaria a propagar-se instantaneamente entre os sistemas, apesar da separação entre eles. Mas o emaranhamento quântico não permite a transmissão de informação a uma velocidade superior à da velocidade da luz, porque nenhuma informação útil pode ser transmitida desse modo. Só é possível a transmissão de informação usando um conjunto de estados emaranhados em conjugação com um canal de informação clássico - aquilo a que se chama o teletransporte quântico.

O emaranhamento quântico é a base para tecnologias emergentes, tais como computação quântica, criptografia quântica e tem sido usado para experiências como o teletransporte quântico. Ao mesmo tempo, isto produz alguns dos aspectos teóricos e filosóficos mais perturbadores da teoria, já que as correlações preditas pela mecânica quântica são inconsistentes com o princípio intuitivo do realismo local, que diz que cada partícula deve ter um estado bem definido, sem que seja necessário fazer referência a outros sistemas distantes. Os diferentes enfoques sobre o que está a acontecer no processo do entrelaçamento quântico dão origem a diferentes interpretações da mecânica quântica.

Marcadores: , ,

Teletransporte quântico

Teletransporte quântico é uma tecnologia que permite o teletransporte de informação, como o spin ou a polarização (não existe transporte de energia ou de matéria) por meios exclusivamente quânticos, que independem de meios de transmissão.

Proposto pela primeira vez em 1993 por físicos teóricos que trabalhavam para a empresa IBM, utiliza um efeito da mecânica quântica chamado de entrelaçamento quântico, pelo qual partículas subatômicas que passam por processos quânticos mantêm um tipo de associação intrínseca mesmo depois de separadas, à semelhança do fenômeno de ressonância, mas teoricamente independente da distância.

O exemplo mais citado é o de duas partículas criadas conjuntamente que assumem spins opostos, e ao se modificar o spin de uma, o spin da outra também se modifica, mesmo que elas estejam separadas.

A tecnologia tenta usar esse efeito para telecomunicações ou armazenamento de informação num possível computador quântico.

Marcadores: , , ,

Teletransporte

O teletransporte ou teleporte é o processo de moção de objetos de um lugar para outro, em curto intervalo de tempo, sem a passagem pelo espaço intermediário.

O teletransporte ainda é restrito ao campo de ficção científica e da ciência especulativa. É importante ressaltar que teletransporte como definido aqui e na ficção científica, não tem relação com teletransporte quântico, um termo técnico-científico utilizado na Física quântica para denotar transporte de informação (e não criação e destruição de matéria).
Índice


Introdução

Desde que a roda foi inventada, há mais de 5 mil anos, as pessoas têm criado novas maneiras de viajar mais rápido de um lugar para o outro. A carruagem, a bicicleta, o automóvel, o avião e o foguete foram inventados para diminuir o tempo que se gasta para chegar aos destinos. Mesmo assim, todas essas formas de transporte têm o mesmo defeito e elas requerem que você percorra uma distância física, o que pode levar de alguns minutos a muitas horas, dependendo dos pontos iniciais e finais.

Mas, e se existisse uma maneira de ir da sua casa ao supermercado sem ter que usar um carro ou do seu quintal para a estação espacial internacional sem ter de usar uma espaçonave? Existem cientistas trabalhando neste tipo de viagem. Ela combina propriedades das telecomunicações e dos transportes para criar um sistema chamado teletransporte. Neste artigo, você vai conhecer experimentos que conseguiram teletransportar fótons. Você também vai descobrir como poderemos usar o teletransporte para viajar a qualquer lugar e a qualquer hora.

O que é o teletransporte?

O teletransporte envolve a desmaterialização de um objeto em um ponto e o envio das configurações atômicas deste objeto para outra localidade, onde ele será reconstruído. Isso significa que o tempo e o espaço pode ser eliminado na viagem. Podemos nos transportar para qualquer lugar de forma instantânea, sem precisar percorrer uma distância física.

Muitos já conhecem a idéia do teletransporte e de outras tecnologias futuristas através da série de televisão Star Trek , baseada em contos escritos por Gene Roddenberry. Os espectadores ficaram maravilhados com as viagens interestelares do Capitão Kirk, Sr. Spock e Dr. McCoy, e como eles se teletransportavam pelo universo.

Em 1993, a idéia do teletransporte saiu do campo da ficção científica e entrou para o mundo da possibilidade teórica. O físico Charles Bennett e um grupo de pesquisadores da IBM (em inglês) confirmaram que o teletransporte quântico era possível, mas somente se o objeto transportado fosse destruído. Esta revelação, anunciada em março de 1993 por Bennet, no encontro anual da American Physical Society (em inglês), aconteceu um pouco antes da publicação do relatório das suas descobertas na edição de 29 de março de 1993, da Physical Review Letters (em inglês). Desde aquela época, experiências utilizando fótons mostraram que o teletransporte quântico era, de fato, possível.

Teletransporte: experimentos recentes

Em 1998, físicos do California Institute of Technology (Caltech) (em inglês), junto com dois grupos europeus, transformam as idéias da IBM em realidade ao transportar com sucesso um fóton, uma partícula de energia que carrega luz. O grupo Caltech conseguiu ler a estrutura atômica de um fóton e enviou esta informação em 1 m de cabo coaxial para criar uma réplica deste fóton. Como tinha sido previsto, o fóton original não existia mais depois que a réplica foi feita.

Durante o experimento, o grupo Caltech conseguiu contornar o princípio da incerteza de Heisenberg, a principal barreira para o teletransporte de objetos maiores que um fóton. Este princípio diz que você não pode saber, simultaneamente, o local e a velocidade de uma partícula. Mas se você não sabe a posição da partícula, como pode teletransportá-la? Para teletransportar um fóton sem violar o princípio de Heisenber, os físicos da Caltech utilizaram um fenômeno conhecido como entrelaçamento. No entrelaçamento, pelo menos três fótons são necessários para realizar o teletransporte quântico.

* Fóton A: o fóton a ser teletransportado
* Fóton B: o fóton de transporte
* Fóton C: o fóton entrelaçado com o fóton B

Se os pesquisadores tentassem olhar o fóton A de perto sem o entrelaçamento, eles poderiam provocar uma colisão e, conseqüentemente, modificá-lo. Ao entrelaçar os fótons B e C, os pesquisadores podem extrair informação sobre o fóton A. O restante da informação seria transferida para o fóton B por meio do entrelaçamento e depois para o fóton C. Quando os pesquisadores aplicam a informação do fóton A no fóton C, eles podem criar uma réplica exata do fóton A, porém, este fóton deixa de existir da maneira como existia antes da informação ser enviada para o fóton C.

Em outras palavras, quando o capitão Kirk se teletransporta para um planeta alienígena, uma análise da sua estrutura atômica passa pela sala de transporte para o destino desejado, onde a réplica do Kirk é criada e o original é destruído.

Um experimento de sucesso foi realizado na Universidade Nacional da Austrália, quando os pesquisadores teletransportaram um raio laser.

O mais recente experimento de sucesso em teletransporte ocorreu em 4 de outubro de 2006, no Instituto Niels Bohr, em Copenhagen, Dinamarca. O Dr Eugene Polzik e sua equipe teletransportaram informações armazenadas em um raio laser, em uma nuvem de átomos. De acordo com Polzik: "é um passo adiante, pois pela primeira vez envolveu o teletransporte entre luz e matéria, dois objetos distintos. Um é o portador da informação e o outro é o meio de armazenamento" (CBC). A informação foi teletransportada por 0,5m.

A idéia de criar réplicas e destruir originais ainda não é atrativa para as pessoas, mas o teletransporte quântico pode ajudar a computação quântica. Estes experimentos com os fótons são importantes para o desenvolvimento das redes que distribuem informação quântica. O professor Samuel Braunstein, da universidade de Wales, em Bangor, criou uma rede chamada "internet quântica". Esta tecnologia pode ser usada um dia para construir um computador quântico que tem taxas de transmissão de dados muitas vezes mais rápidas que o computador mais moderno.

Teletransporte de pessoas

Ainda estamos longe do desenvolvimento de uma máquina de teletransporte como a que aparece na série Star Trek. As leis da física podem até impedir que exista um teletransportador que envie uma pessoa, instantaneamente, para outro lugar. Isso precisaria ser feito na velocidade da luz.

Para uma pessoa ser teletransportada, uma máquina teria que ser construída para identificar e analisar todos os 10^28 átomos que formam um corpo humano, o que significa mais de um trilhão de átomos. Esta máquina teria que enviar essa informação para outro lugar, onde o corpo da pessoa seria reconstruído com precisão. As moléculas não poderiam estar 1 mm fora do lugar, já que isso poderia deixar a pessoa com graves defeitos neurológicos ou fisiológicos.

Nos episódios de Star Trek (Jornada na estrelas) e nas outras séries que surgiram depois, o teletransporte era feito por uma máquina chamada transportador. Esta máquina era, basicamente, uma plataforma onde ficavam os personagens, enquanto Scotty operava os controles. A máquina analisava cada átomo da pessoa na plataforma e usava uma onda transportadora para transmitir estas moléculas para onde a tripulação quisesse ir. Os telespectadores testemunhavam o Capitão Kirk e sua tripulação desaparecerem e reaparecerem instantamente em um planeta distante.

Se essa máquina existisse, seria improvável que a pessoa transportada fosse realmente "transportada". Funcionaria mais ou menos como uma aparelho de fax. Uma réplica da pessoa apareceria do outro lado da transmissão. Mas o que aconteceria com o original? Uma teoria sugere que o teletransporte deveria combinar clonagem genética com digitalização.

Nesta clonagem biodigital, os tele-viajantes teriam que morrer. Seus corpos e mentes originais deixariam de existir. A sua estrutura atômica seria copiada para outra localidade e a digitalização recriaria as memórias, emoções, esperanças e sonhos dos viajantes. Então eles ainda iriam existir, mas em um novo corpo, com a mesma estrutura atômica do corpo original e programado com a mesma informação.

Como todas as outras tecnologias, os cientistas continuam a melhorar a idéia do teletransporte até que se torne possível utilizá-la sem métodos tão agressivos. Um dia, um dos seus descendentes vai terminar um dia de trabalho num escritório espacial situado a milhões de anos-luz da Terra e falar para o seu relógio de pulso transportá-lo para casa, no planeta X. Quando ele terminar de pronunciar estas palavras, já vai estar sentado à mesa de jantar.

Fonte do texto: Wikipédia (com alterações)

Marcadores: , , ,