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Preface to the Third Edition

The first edition of this text appeared in 1950, and it was so well received that
it went through a second printing the very next year. Throughout the next three
decades it maintained its position as the acknowledged standard text for the intro-
ductory Classical Mechanics course in graduate level physics curricula through-
out the United States, and in many other countries around the world. Some major
institutions also used it for senior level undergraduate Mechanics. Thirty years
later, in 1980, a second edition appeared which was “a through-going revision of
the first edition.” The preface to the second edition contains the following state-
ment: “I have tried to retain, as much as possible, the advantages of the first edition
while taking into account the developments of the subject itself, its position in the
curriculum, and its applications to other fields.” This is the philosophy which has
guided the preparation of this third edition twenty more years later.

The second edition introduced one additional chapter on Perturbation Theory,
and changed the ordering of the chapter on Small Oscillations. In addition it added
a significant amount of new material which increased the number of pages by
about 68%. This third edition adds still one more new chapter on Nonlinear Dy-
namics or Chaos, but counterbalances this by reducing the amount of material in
several of the other chapters, by shortening the space allocated to appendices, by
considerably reducing the bibliography, and by omitting the long lists of symbols.
Thus the third edition is comparable in size to the second.

In the chapter on relativity we have abandoned the complex Minkowski space
in favor of the now standard real metric. Two of the authors prefer the complex
metric because of its pedagogical advantages (HG) and because it fits in well with
Clifford Algebra formulations of Physics (CPP), but the desire to prepare students
who can easily move forward into other areas of theory such as field theory and
general relativity dominated over personal preferences. Some modern notation
such as 1-forms, mapping and the wedge product is introduced in this chapter.

The chapter on Chaos is a necessary addition because of the cutrent interest
in nonlinear dynamics which has begun to play a significant role in applications
of classical dynamics. The majority of classical mechanics problems and appli-
cations in the real world include nonlinearifies, and 1t 1s important for the student
to have a grasp of the complexities involved, and of the new properties that can
emerge. It is also important to realize the role of fractal dimensionality in chaos,

New sections have been added and others combined or eliminated here and
there throughout the book, with the omissions to a great extent motivated by the
desire not to extend the averall length beyond that of the second edition. A section

ix
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was added on the Euler and Lagrange exact solutions to the three body problem.
In several places phase space plots and Lissajous figures were appended to illus-
trate solutions. The damped driven pendulum was discussed as an example that
explains the workings of Josephson junctions. The symplectic approach was clar-
ified by writing out some of the matrices. The harmonic oscillator was treated
with anisotropy, and also in polar coordinates. The last chapter on continua and
fields was formulated in the modern notation introduced in the relativity chap-
ter. The significances of the special unitary group in two dimensions SU(2) and
the special orthogonal group in three dimensions SO(3) were presented in more
up-to-date notation, and an appendix was added on groups and algebras. Special
tables were introduced to clarify properties of ellipses, vectors, vector fields and
1-forms, canonical transformations, and the relationships between the spacetime
and symplectic approaches.

Several of the new features and approaches in this third edition had been men-
tioned as possibilities in the preface to the second edition, such as properties of
group theory, tensors in non-Euclidean spaces, and “new mathematics™ of theoret-
ical physics such as manifolds. The reference to “One area omitted that deserves
special attention—nonlinear oscillation and associated stability questions” now
constitutes the subject matter of our new Chapter 11 “Classical Chaos.” We de-
bated whether to place this new chapter after Perturbation theory where it fits
more logically, or before Perturbation theory where it is more likely to be covered
in class, and we chose the latter. The referees who reviewed our manuscript were
evenly divided on this question.

The mathematical level of the present edition is about the same as that of the
first two editions. Some of the mathematical physics, such as the discussions
of hermitean and unitary matrices, was omitted because it pertains much more
to quantum mechanics than it does to classical mechanics, and little used nota-
tions like dyadics were curtailed. Space devoted to power law potentials, Cayley-
Klein parameters, Routh’s procedure, time independent perturbation theory, and
the stress-energy tensor was reduced. In some cases reference was made to the
second edition for more details. The problems at the end of the chapters were
divided into “derivations” and “exercises,” and some new ones were added.

The authors are especially indebted to Michael A. Unseren and Forrest M.
Hoffman of the Oak Ridge National laboratory for their 1993 compilation of
errata in the second edition that they made available on the Internet. It is hoped
that not too many new errors have slipped into this present revision. We wish fo
thank the students who used this text in courses with us, and made a number of
useful suggestions that were incorporated into the manuscript. Professors Thomas
Sayetta and the late Mike Schuette made helpful comments on the Chaos chapter,
and Professors Joseph Johnson and James Knight helped to claxify our ideas
on Lie Algebras. The following professors reviewed the manuscript and made
many helpful suggestions for improvements: Yoram Alhassid, Yale University;
Dave Ellis, University of Toledo; John Gruber, San Jose State; Thomas Handler,
University of Tennessee; Daniel Hong, Lehigh University; Kara Keeter, Idaho
State University; Carolyn Lee; Yannick Meurice, University of Iowa; Danie]
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Marlow, Princeton University; Julian Noble, University of Virginia; Muhammad
Numan, Indiana University of Pennsylvania; Steve Ruden, University of Califor-
nia, Frvine; Jack Semura, Portland State University; Tammy Ann Smecker-Hane,
University of California, Irvine; Daniel Stump, Michigan State University; Robert
Wald, University of Chicago; Doug Wells, Idaho State University.

It has indeed been an honor for two of us (CPP and JLS) to collaborate as
co-authors of this third edition of such a classic book fifty years after its first ap-
pearance. We have admired this text since we first studied Classical Mechanics
from the first edition in our graduate student days (CPP in 1953 and JLS in 1960),
and each of us used the first and second editions in our teaching throughout the
years, Professor Goldstein is to be commended for having written and later en-
hanced such an outstanding contribution to the classic Physics literature.

Above all we register our appreciation and acknolwedgement in the words of
Psalm 19,1:

Of evpavor Sinyotvrat Sokav Oeod

Flushing, New York HERBERT GOLDSTEIN
Columbia, South Carolina CHARLES P. POOLE, JR.
Columbia, South Carolina JouN L. SAFKO

July, 2000



CHAPTER

1.1 8

Survey of the
Elementary Principles

The motion of material bodies formed the subject of some of the earliest research
pursued by the pioneers of physics. From their efforts there has evolved a vast
field known as analytical mechanics or dynamics, or simply, mechanics. In the
present century the term “classical mechanics” has come into wide use to denote
this branch of physics in contradistinction to the newer physical theories, espe-
cially quantum mechanics. We shall follow this usage, interpreting the name to
include the type of mechanics arising out of the special theory of relativity. It is
the purpose of this book to develop the structure of classical mechanics and to
outline some of its applications of present-day interest in pure physics. Basic to
any presentation of mechanics are a number of fundamental physical concepts,
such as space, time, simultaneity, mass, and force. For the most part, however,
these concepts will not be analyzed critically here; rather, they will be assumed as
undefined terms whose meanings are familiar to the reader.

MECHANICS OF A PARTICLE

T.et r be the radius vector of a particle from some given ongin and v its vector
velocity:

dr
=

1 4 (1.D
The linear momentum p of the particle is defined as the product of the particle

mass and its velocity:
p = mv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton's second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

F=d—psp, (1.3)

1



Chapter 1 Survey of the Elementary Principles

or

d

In most instances, the mass of the particle 1s constant and Eq. (1.4) reduces to

F=mg=ma. (15)

where a is the vector acceleration of the particle defined by

d?r

a= i (1.6)

The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system™) is
a sufficient approximation to an inertial system, while for some astronomical pur-
poses it may be necessary to construct an inertial system by reference to distant
galaxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems, which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these, the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momertum, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp, (1.7)

where 1 is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

d
=N-= — . 1.9
rxF=N rxdt(mv) (1.9)
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Equation (1.9) can be written in a different form by using the vector identity:

d d
—(xxmv)=vxmv+rx —(mv), (1.10)
at dt

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

d dL .
=— =-—=L. 1.11
N dt(rxmv) ’r L (1.11)

Note that both N and L depend on the point O, about which the moments are
taken.

As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem for the Angular Momentum of a Farticle: If the total
torque, N, is zero then L = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
Wi = / F.ds. {1.12)
J1

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

dv m d )
. ds = ~wdt=— | = ,
fF ds mfdt vdt 2[dt(v)a.’t

m
Wiz = 5(1;3 —v). (1.13)

and therefore

The scalar quantity mv?/2 is called the kinetic energy of the particle and is de-
noted by T, so that the work done is equal to the change n the kinetic energy:

Wia=1 —T3. (1.14)

If the force field is such that the work Wy, is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system is obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of W), on
the particular path implies that the work done around such a closed circuit is zero,
i.e.

%F-ds=0. (L.15)
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Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F + ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, W2, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV@), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intuitively by a simple argument. If Wi is independent of the path of
integration between the end points 1 and 2. it should be possible to express Wiy
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by —V, so that for a differential path length we
have the relation

F.ds=-dV
or
av
FY = T
as

which is equivalent to Eq. (1.16). Notc that in Eq, (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

W=V, —W. (1.1D
Combining Eq. (1.17) with Eq. (1.14), we have the result
i+ Vi=T4 VW, (1.13)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the totul energy of the particle, T + V, is conserved.

The force applied to a particle may in some circumstances be given by the
gradient of a scalar function that depends explicitly on both the position of the
particle and the time. However, the work done on the particle when it travels a
distance ds,

F.ds=——ds,
as d

is then no longer the total change in —V during the displacement, since V also
changes explicitly with time as the particle moves. Hence, the work done as the
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particle goes from point 1 to point 2 is no longer the difference in the function V
betwezn those points. While a total energy T + V may still be defined, it is not
conserved during the course of the particle’s motion.

MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the system. and internal forces on, say, some particle i due to all
other particles in the system. Thus, the equation of motion (Newton's second law)
for the ith particle is written as

Y F.+E9 =p, (119)
J

where F,(e) stands for an external force, and F, is the internal force on the ith
particle due to the jth particle (F,,, naturally, is zero). We shall assume that the
F,, (like the F’) obey Newton’s third law of motion in ifs original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weauk
law of action and reaction

Summed over all particles, Eq. (1.19) takes the form

d2
TZmn=3 FO+3 K, (1.20)
' ' idj
The first sum on the right is simply the total external force F(), while the second
term vanishes, since the law of action and reaction states that each pair F,; +F

is zero. To reduce the left-hand side, we define a vector R as the average of the
radii vectors of the particles, weighted in proportion to their mass:

The vector R defines a point known as the center of mass, or more loosely as the
center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

MR _ > FY =F® (122)
di? — '

which states that the center of mass moves as if the total external force were

acting on the entire mass of the system concentrated at the center of mass. Purely

internal forces, if the obey Newton’s third law, therefore have no effect on the
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FIGURE 1.1 The center of mass of a system of particles.

motivn of the center of mass. An ofi-quoted example 1s the motion of an exploding
shell—the center of mass of the fragments traveling as if the shell were still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the ejection of the exhaust gases at high velocity must be counterbalanced by the
forward motion of the vehicle at a slower velocity.

By Eq. (1.21) the total hnear momentum of the system,

dr; dR
P=Zm,z =M—d—t, (1.23)

is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated &s
the

Consenvation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved.

We cbtain the total angular momentum of the system by forming the cross
product r; x p, and summing over i. If this operation is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

. d .
Y (o xp) = :E(r, xp)=L=) rxF9+> 1, xF; (1.24)
I3 il H iy
i#J)

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

l',XFj;'l‘l‘J XF;jZl:r,—l'J)XFJ;, (1.25)
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FIGURE 1.2 The vector r;; between the ith and jth particles.

using the equality of action and reaction But r; — r, is identical with the vector
r,; from j to i (cf. Fig. 1.2), so that the right-hand side of Eq. (1.25) can be written
as

F, xF]l'

If the internal forces between two particles, in addition to being equal and oppo-
site, also lie alung the line joining the particles—a condition known as the strong
law of action and reaction—then all of these cross products vanish. The sum over
pairs is zero under this assumption and Eq. (1.24) may be written in the form

dL

— =N@. 1.26

T (1.26)
The time derivative of the total angular momentum is thus equal to the moment

of the external force about the given point, Corresponding to Eq. (1.26) is the

Conservation Theorem for Total Angular Momentum: L is constant in time if the
applied (external) torque is zero.

(It is perhaps worthwhile to emphasize that this is a vector theorem; i.c., L,
will be conserved if Ni? is zero, even if N and N ©) are not zero.)

Note that the conservation of linear momentum in the absence of applied forces
assumes that the weak law of action and reaction is valid for the internal forces.
The conservation of the total angular momentum of the system in the absence of
applied torques requires the validity of the strong law of action and reaction—that
the internal forces in addition be central. Many of the familiar physical forces,
such as that of gravity, satisfy the strong form of the law. But it is possible to
find forces for which action and reaction are equal even though the forces are not
central (see below). In a system involving moving charges, the forces between
the charges predicted by the Biot-Savart law may indeed violate both forms of
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the action and reaction law.* Equations (1.23) and (1.26), and their corresponding
conservation theorems, are not applicable in such cases, at least in the form given
here. Usually it is then possible to find some generalization of P or L that is
conserved, Thus, in an isolated system of moving charges it is the sum of the
mechanical angular momentum and the electromagnetic “angular momentum” of
the field that is conserved.

Equation (1.23) states that the total linear momentum of the system is the same
as if the entire mass were concentrated at the center of mass and moving with it.
The analogous theorem for angular momentum is more complicated. With the
ongin O as reference point, the total angular momentum of the system is

L=Zr, xp;.
1

Let R be the radius vector from O to the center of mass, and Iet r: be the radius
vector from the center of mass (o the ¢th particle. Then we have (cf. Fig. 1.3)

r=r+R (1.27)
and
v, =V, +v
where
_ R
ar

Center
of mass

FIGURE 1.3 The vectors involved in the shift of reference point for the angular momen-
tum.

*If two charges are moving uniformly with parallel velocity vectors that are not perpendicular to the
line joining the charges, then tie net mutual forces are equal and opposite but do not lie along the
vector between the charges. Consider, further, two charges moving (instantaneously) so as to “cross
the T,” 1.6., one charge moving dircetly at the other, which in turn 15 moving at right angles to the first
Then the second charge exerts a nonvanishing magnetic force on the first, without experiencing any
magnetic reaction force at that mstant,
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is the velocity of the center of mass relative to O, and

_d
T dt

is the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

L=!ZR xm,v-i—Xi:r: X mv, + (lZm,rﬁ) x v+ R x %'Zm,rj

The last two terms in this expression vanish, for both contain the factor mlr:,
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=RxMv+) r xp| (1.28)
]

In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momentum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
il the center of mass 15 at rest with respect to O will the angular mementum be
independent of the point of reference. In this case, the first ierm in (1.28) vanishes,
and L always reduces to the angular momentum taken about the center of mass.

Finally, let us consider the energy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system from an initial
configuration 1, to a final configuration 2:

2 2 2
W12=Efl F,-ds,:Z/l Ff“)~ds,+2/l F, -ds,. (129
i i Ly
1%}

Again, the equations of motion can be used to reduce the mtegrals to

2 2 2
Zfl F,-ds:Zfl m,\",.v,dt=le; d(émfvg).

Hence, the work done can still be written as the difference of the final and initial
kinetic energies:

Wi2=1T,—-T1,

where T, the total kinetic energy of the system, is

1 2
T=§lZm,v,. (1.30)
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Making use of the transformations to center-of-mass coordinates, given in Eq.
(1.27), we may also write T as

T = %Z‘:m,(V+V1)-(V+Vf)

1 1 d
= -jz‘:m,v2+—izm:v?+"- % (Zi:mzrf),

and by the reasoning already employed in calculating the angular momentum, the
last term vanishes, leaving

1 !
T=5Mv2+52m,v"2 (1.31)
[

The kinetic energy, like the angular momentum, thus also consists of two parts:
the kinetic energy obtained if all the mass were concentrated at the center of mass,
Pplus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eqg. (1.29). In the special case that the
external forces are derivable in terms of the gradient of a potential, the first term
can be written as

Z‘/lefe)-ds, =—Z-/;2V,W-ds,=—2m
H 1 1

where the subscript i on the del operator ndicates that the derivatives are with
respect to the components of r,. If the internal forces are also conservative, then
the mutual forces between the ith and jth particles, F;, and F,,, can be obtained
from a potential function V;, . To satisfy the strong law of action and reaction, V;,
can be a function only of the distance between the particles:

2
s
1

Vy =V, —r; 1) (1.32)
The two forces are then automatically equal and opposite,
F;, =-V\V, =4+V,V,, =-F,, (1.33)
and lie along the line joining the two particles,

VVlr—r ) =@ —r)/f, (1.34)

where j is some scalar function. If ¥}, were also a function of the difference of
some other pair of vectors associated with the particles, such as their velocities
or (to step into the domain of modern physics) their intrinsic “spin” angular mo-
menta, then the forces would still be equal and opposite, but would not necessarily
lie along the direction between the particles.
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When the forces are all conservative, the second term in Eq. (1.29) can be
rewritten as a sum over pairs of particles, the terms for each pair being of the
form

2
_.[1 (V\ Vi - ds, + V,V,, - ds;).

If the difference vector r. —r, is denoted by r,;, and if V;; stands for the gradient
with respect tor,,, then

ViV, =V, Vi, ==V, V,.
and
ds, —ds;, =dr, —dr; = dr,j,

so that the term for the i, pair has the form

—fv”‘]” -dl‘u.

The total work arising from internal forces then reduces to

1 2 1
_5;/1 v, Vi -dr, = —EIZJ:V,J

iy 1%

2
(135)

1

The factor % appears in Eq. (1.35) because in summing over both / and j each
member of a given pair ‘s included twice, first in the i summation and then in the
J summation.

From these considerations, it is clear that it the external and mternal forces are
both derivable from potentials it is possible to define a total potential energy, V,
of the system,

V=ZV;+%ZV,]. (1.36)
C T
such that the total enerzy T + V is conserved, the analog of the conservation
theorem (1.18) for a single particle.

The second term on the right in Eq. (1.36) will be called the internal potential
energy of the system. In general, it need not be zero and, more important, it may
vary as the system changes with time. Only for the particular class of systems
known as rigid bodies will the internal potential always be constant. Formally,
a rigid body can be defined as a system of particles in which the distances r,
are fixed and cannot vary with time. In such case, the vectors dr;; can only be
perpendicular to the corresponding r;;, and therefore to the F;;. Therefore, mn a
rigid body the internal jorces do no work, and the internal potential must remain
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constant. Since the total potential is in any case uncertain to within an additive
constant, an unvarying internal potential can be completely disregarded in dis-
cussing the motion of the system.

CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

m[i:, = FI(E) - ZFJ[.
J

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take 1nto account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances r,,
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

fry,r,rs,...,0) =0, (L.37)

then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

x, — r,)2 —cf, =0.
A particle constrained to move along any curve or on a given surface is another
obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a constraint.

Constraints nul expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

r2—a’>0
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(where q is the radius of the sphere), which is not in the form of (1.37). Thus, in
a gravitational field a particle placed on the top of the sphere will slide down the
surface part of the way but will eventually fall off.

Constraints are further classified according to whether the equations of con-
straint contain the time as an explicit variable (rheonomous) or are not explicitly
dependent on time (scleronomous). A bead sliding on a rigid curved wire fixed
in space is obviously subject to a scleronomous constraint; if the wire is moving
in some prescribed fashion, the constrant is rheonomous. Note that if the wire
moves, say, as a reaction to the bead’s motion, then the tune dependence of the
constraint enters in the equation of the constraint only through the coordinates
of the curved wire (which are now part of the system coordinates). The overall
constraint is then scleronomous.

Constraints introduce two types of difficulties in the solution of mechanical
problems. First, the coordinates r, are no longer all independent, since they are
connected by the equations of constraint; hence the equations of motion (1.19)
are not all independent. Second, the forces of constraint, e.g., the force that the
wire exerts on the bead (or the wall on the gas particle), is not furnished a pri-
orl. They are among the unknowns of the problem and must be obtained from the
solution we seek. Indeed, imposing constraints on the system 1s simply another
method of stating that there are forces present in the problem that cannot be spec-
ified directly but are known rather in terms of their effect on the motion of the
system.

In the case of holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates. A system of N particles. free from constraints,
has 3N independent coordinates or degrees of freedom. If there exist holonomic
constraints, expressed in & equations in the form (1.37), then we may use these
equations to eliminate &k of the 3N coordinates, and we are left with 3N — k inde-
pendent coordinates, and the system is said to have 3N — k degrees of freedom.
This elimination of the dependent coordinates can be expressed in another way,
by the introduction of new, 3N — k, independent variables g1, 42, - .., g3n—z in
terms of which the old coordinates ry, I3, ..., Iy are expressed by equations of
the form

r=ri(qg1. 42 ....43n-4, 1)

(1.38)
Iy = l'N(qb q2, ... Q3N k> t)

containing the constraints in them implicitly. These are transformation equations
from the set of (r;) vatiables to the (g;) set, or alternatively Egs. (1.38) can be con-
sidered as parametric representations of the (ry) variables. It is always assumed
that we can also transform back fiom the (¢;) to the (r;) set, i.e., that Eqs. (1.38)
combined with the k equations of constraint can be inverted to obtain any ¢, as a
function of the (ry) variable and time.
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Usually the generalized coordinates, gy, unlike the Cartesian coordinates, will
not divide into convenient groups of three that can be associated together to form
vectors. Thus, in the case of a particle constrained to move on the surface of a
sphere, the two angles expressing position on the sphere, say latitude and longi-
tude, are obvious possible generalized coordinates. Or, in the example of a double
pendulum moving in a plane (two particles connected by an inextensible hght
rod and suspended by a similar rod fastened to one of the particles), satisfactory
generalized coordinates are the two angles 8, 8>. (Cf. Fig. 1.4.) Generalized co-
ordinates, in the sense of coordinates other than Cartesian, are often useful in
systems without constraints. Thus, in the problem of a particle moving in an ex-
ternal central force field (V = V(r)), there is no constraint involved, but 1t is
clearly more convenient to use spherical polar coordinates than Cartesian coordi-
nates. Do not, however, think of generalized coordinates in terms of conventional
orthogonal position coordinates. All sorts of quantities may be impressed to serve
as generalized coordinates. Thus, the amplitudes in 4 Fourier expansion of r, may
be used as generalized coordinates, or we may find it convenient to employ quan-
tities with the dimensions of energy or angular momentum.

If the constraint is nonholonomic, the equations expressing the constraint can-
not be used to eliminate the dependent coordinates. An oft-quoted example of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally invalve
angular coordinates to specify the orientation of the body, plus a set of coordi-
nates describing the location of the point of contact on the surface. The constraint
of “rolling” connects thzse two sets of coordinates; they are not independent. A
change in the position of the point of contact inevitably means a change in its
orientation. Yet we cannot reduce the number of coordinates, for the “rolling”
condition is not expressible as a equation between the coordinates, in the manner
of (1.37). Rather, it is a condition on the velacities (i e , the point of contact is
stationary), a differential condition that can be given in an integrated form only
gfter the problem is solved.

FIGURE 1.4 Double pendulum.
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0o x
FIGURE 1.5 Vertical disk rolling on a horizontal plane.

A simple case will illustrate the point. Consider a disk rolling on the horizontal
xy plane constrained to move so that the plane of the disk is always vertical.
The coordinates used to describe the motion might be the x. y coordinates of the
center of the disk, an angle of rotation ¢ sbout the axis of the disk, and an angle
@ between the axis of the disk and say, the x axis (cf. Fig 1.5). As a result of the
constraint the velocity of the center of the disk, v, has a magnitude proportional

to ¢,
v =ap,

where a is the radius of the disk, and its direction is perpendicular to the axis of
the disk:

x = vsind

y = —vcosf.
Combining these conditions, we have two differential equations of constraint:

dx — asinéd¢ =0,

(1.39)
dy +acosbdeg =0.

Neither of Egs. (1.39) can be integrated without in fact solving the problem,; i.e.,
we cannot find an integrating factor f(x, y, 0, ¢) that will turn either of the equa-
tions into perfect differentials (cf. Derivation 4).* Hence, the constraints cannot
be reduced to the form of Eq. (1.37) and are therefore nonholonomic. Physically
we can see that there can be no direct functional relation between ¢ and the other
coordinates x, y, and @ by noting that at any point on its path the disk can be

*In principle, an integrating factor can always be found for a first-order di-ferential equation of con-
straint in systems involving only two coordinates and such constraints are therefore holonomic. A
famliar example 1s the two-dimensional motion of a circle rolling on an inchined plane.
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made to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, x, ), and 8 have been returned to their original values, but ¢
has changed by an amoant depending on the radius of the circle.

Nonintegrable differential constraints of the form of Eqs. (1.39) are of course
not the only type of nonholonomic constraints. The constraint conditions may
involve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints are always amenable to a formal solution. But there is
no general way to attack nonholonomic examples. True, if the constraint is nonin-
tegrable, the differential equations of constraint can be introduced into the prob-
lem along with the differential equations of motion, and the dependent equations
eliminated, in effect, by the method of Lagrange multipliers.

‘We shall return to this method at a later point. However, the more vicious cases
of nonholonomic constraint must be tackled individually, and consequently in the
development of the more formal aspects of classical mechanics, it is almost invari-
ably assumed that any constraint, if present, is holonomic. This restriction does
not greatly limit the applicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic. The reason is that the
entire concept of constraints imposed in the system through the medium of wires
or surfaces or walls is particularly appropriate only in macroscopic or large-scale
problems. But today physicists are more interested 1n atomic and nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller particles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then used only
as mathematical idealizations to the actual physical case or as classical approxi-
mations to a quantum-mechanical property, e.g., rigid body rotations for “spin.”
Such constraints are always holonomic and fit smoothly into the framework of the
theory.

To surmount the second difficulty, namely, that the forces of constraint are
unknown a priori, we should like to so formulate the mechanics that the forces
of constraint disappear. We need then deal only with the known applied forces. A
hint as to the procedure to be followed is provided by the fact that in a particular
system with constraints ie arigid body, the work done by internal forces (which
are here the forces ot constraint) vanishzs. We shall follow up this clue in the
ensuing sections and generalize the ideas contained in it.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A viral (infinitesimal’ displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates 8r,, consistent with the forces and constraints imposed on the system
at the given instant t. The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the totat force on each particle vanishes, F; = 0. Then clearly the dot product
F, « ér,, which is the virtual work of the force F; in the displacement §r,, also
vanishes. The sum of these vanishing products over all particles must likewise be
Zero:

ZF, Lo, = 0. (1.40)

As yet nothing has been said that has any new physical content. Decompose F,
into the applied force, F,(“), and the force of constraint, f;,

F, = F“ + 1. (1.41)
so that Eq. (1.40) becomes

ZFS“’.Sr,+EF, LA =0 (1 42)
1

We now restrict ourselves to systems for which the net virtual work of the
Jorces of constraint is zero. We have seen that this condition holds true for rigid
bodies and it is valid for a large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This is no longer true if sliding friction forces are present, and
we must exclude such systems from our formulation. The restriction is not un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On
the other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily at rest and can do no work in an infinites-
imal displacement consistent with the rolling constraint. Note that if a particle is
constrained to a surface that is itself moving in time, the force of constraint is
instantaneously perpendicular to the surface and the work during a virtual dis-
placement is still zero even though the work during an actual displacement in the
time d¢ does not necessarily vanish.

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

Y F o, =0. (1.43)

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of §r, can no longer be set equal to zero; i.e., in general F,(a) 4 0, since
the ér; are not completely independent but are connecied by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g,, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

Ft =f’x,
can be written as
Fr _].)1 = 0»

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),
we can immediately write

D ® —p)-or =0, (1.44)

and, making the same resolution 1nto applied torces and torces of constraint, there
results

S FD —piysr + > £ -ori =0,
i [

We again restrict oursclves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

Y E® —pi)-or, =0, (1.45)

which 1s often called D'Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear. and the superscript ) can now e
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
Aq, can be set separately equal to zero.

The translation fromr, to ¢, language starts from the transformation equations
(1.38),

N =ri{g1,q2,....91t) (1.45"
(assumuing r independent coordinates), and is carried out by means of the usual

“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the gx by the formula
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Similarly, the arbitrary virtual displacement ér, can be connected with the virtual
displacements 8¢, by

dr,
e, = Z &éaqj (1 47)

Note that no variation of time, §t, is involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates, the virtual work of the F, becomes

ar,
D Fi-dri=) F - —dq,
i 1, 36]]
=3 0,3q,. (1.48)
J

where the Q) are called the components of the generalized force, defined as

=2k or. (149)
9a,

Note that just as the g’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but @,8g, must always have the
dimensions of work. For example, @, might be a torque N, and dg; a differential
angle d6;, which makes N, 40, a differential of work.

We turn now to the other other term nvolved m Eqg. (1.45), which may be
written as

Z <81, = Zm,r, . 81,

1

Expressing dr; by (1.47, this becomes

. o
Z . 3
5 4,

Consider now the relation

. or d . or . d [0 )il _
¢ — = e — ] — ce—1l—11. 1.50
Zl:mlrl 3q, 1 I:df (mxrx aq}) mr, pT (qu ( )

In the last term of Eq. (1.50) we can interchange the differentiation with respect
to ¢ and g, for, in analogy to (1.40).
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d(ar,)_af,_ 3?r, it 9°r,
dt \da;)  dq, bq,9a X" Bq,01°
Bv,
qu

by Eq. (1.46). Further, we also see from Eq. (1.46) that
dv;  Or
oq, 9q; '
Substitution of these changes in (1.50) leads to the result that

Z"” ——Z A W )/}
llaj dt t,é xtaqj,

1

(1.51)

and the second term on the lefi-hand side of Eq. (1.45) can be expanded into

XJ:I% [% (Z%m )] %, (Z 2 )_ Q"“s""

Identifying Y, %m, v,2 with the system kinetic energy T, D’ Alembert’s principle
(cf. Eq. (1.45)) becomes

d (0T aT 5
ECIE RICENE

Note that in a system of Cartesian coordinates the partial derivative of T with
respect to g; vanishes. Thus, speaking in the language of differential geomery,
this term arises from the curvature of the coordinates g,. In polar coordinates,
e.g., itis in the partial derivative of T with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables ¢, can be any
set of coordinates used to describe the motion of the system. If, however, the con-
straints are holonomic, then it is possible to find sets of independent coordinates
g, that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement 8¢, is then independent of dgx, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (8T aT
—_ | — 1.53
dt (341 ) 3‘11 — o (133

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F,=-VV.
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Then the generalized forces can be written as

¢ l', al',
= F, - = - v,V.—,
Q] 2‘ 1 34, E, i 34,

which is exactly the same expression for the partial derivative of a function
=V(r),r2, ..., Ty, t) with respect to g;:
av
Q,=—-—— (1.54)
J aql
Equations (1.53) can then be rewritten as

i(ﬁl)_ﬂliﬁl=u (1.55)
dt \ 8g; aq,

The equations of motion in the form (1.55) are not necessanly restricted to conser-
vative systems, only if V is not an explicit function of time is the systcm conscerva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term i V in the partial derivative with respect

tog,:

d (B(T—V))_B(T—V) —0
de \ 34, 9q,
Or, defining a new function, the Lagrangian L, as
L=T-V, (1.56)
the Eqs. (1.53) become
d (3L L
£ ("—. L) w57
de \ g, dq,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Eqs (1 57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 itis shownthatif L(g,4, )
is an approximate Lagrangian and F(g, ) is any differentiable function of the
generalized coordinates and time, then

L@d0=L@.an+5 1.57)
is a Lagrangian also resulting in the same equations of motion. It is also often
possible to find alternative Lagrangians beside those constructed by this prescrip-
tion (see Exercise 20). While Eq. (1.56) is always a suitable way to construct a
Lagrangian for a conservative system, it does not provide the only Lagrangian
suitable for the given system.
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VELOCITY-DEPENDENT POTENTIALS AND
THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V', in the usual sense, providing the generalized forces are obtained from
a function U(q,, 4,) by the prescription

oU d [aU

=——+=|—]. 1.58

= dq, dt (3‘11') (4%

In such case, Egs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by

L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely. the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while,

Consider an electric charge, g, of mass m moving at a velocity. v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field.
B, which may depend upon time and position. The charge experiences a force,
called the Lorentz force, given by

F=¢q[E+ (vx B)]. (1.60)

Both E(1, x, y, z) and B{t, x, v, z) are continuous functions of time and positon
derivable from a scalar potential ¢ (¢, x, y, z) and a vector potential A(¢t, X, y,z)

by

E=-Vp-— (1.612)

and
B=VxA. (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qg¢ —qgA-v, (1.62)
so the Lagrangian, L =T — U, is

L=3im’—gp+qA-v. (1.63)
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Considering just the x-component of Lagrange’s equations gives

. 34 9A, A, (a¢ dA,
mx"q(”“ TV TV )T\t ) (1.64)

The total time derivative of A, is related to the particle time derivative through

dA, dA,
= .V
dt at TV-VA
an an an an
= , ) 1.65
g Uy T TR, (1.65)

Equation (1.61b) gives

394, 9A 34, 0A
(VXB)"=”>'(3_;_ avx)”z(a_xz_ azx)‘

Combining these expressions gives the equation of motion in the x-direction
mX = q [Ex + (v x B);]. (1.66)

On a component-by-component comparison, Egs. (1.66) and (1.60) are identical,
showing that the Lorentz force equation is derivable from Egs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

d (3L aL
Z\3a. ) a0 = Qj,
£ \9q;
where L contains the potential of the conservative forces as before, and Q, rep-
resents the forces not arising from a potential. Such a situation often occurs when

frictional forces are present. It frequently happens that the frictional force is pro-
portional to the velocity of the particle, so that its x-component has the form

Ff,\, = _kxvt.

Frictional forces of this type may be denved in terms of a function JF, known as
Rayleigh’s dissipation function, and defined as

1
F=3Y (et + 02, + ke ) (1.67)
3

where the summation is over the particles of the system. From this definition it is
clear that

aF

vy

Ff =—
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or, symbolically,

F;=—V,F. (1.68)

We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

de = —Ff «dr= —Ff cvdl = (kxvi +kyv§ —kzvzz) dt.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
gencralized force resulting from the force of friction is then given by

ar; or;
QJ:ZFf"a; =“ZV"7:‘3_;:

Y VFR L bys,
9q,

_9F (1.69)

An example is Stokes’ law, whereby a sphere of radius 2 moving at a speed
v, in a medium of viscosmity 7 experiences the frictional drag force F ; = 6z nav.
The Lagrange equations with dissipation become

d (oL aL aF
Sl il D P 1.70
a (aéj) 5q, T 8d, 110

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.

SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION

The previous sections show that for systems where we can define a Lagrangian,
i.e., holonomic systems with applied forces derivable from an ordinary or gen-
eralized potential and workless constraints, we have a very convenient way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire to eliminate the forces of constraint from the equations of motion,
and in achieving this goal we have obtained many other benefits. In setting up the
original form of the equations of motion, Egs. (1.19), it is necessary to work with
many vector forces and accelerations. With the Lagrangian method we only deal
with two scalar functions, T and V, which greatly simplifies the problem.

A straightforward routine procedure can now be established for all problems
of mechanics to which the Lagrangian formulation is applicable. We have only to
write T and V in generalized coordinates, form L from them, and substitute in
(1.57) to obtain the equations of motion. The needed transformation of 7 and V
from Cartesian coordinates to generalized coordinates is obtained by applying the
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transformation equations (1.38) and (1.45). Thus, T is given in general by

2
| 1 or,, or
T=Z§’"="t=zim‘( _“"”a_t')'
f ! 7

aq;

It is clear that on carrying out the expansion, the expression for T in generalized
coordinates will have the form

., 1 . -
T=My+Y Mg+ > D Mg, dn (1.71)
7 Ik

where Mo, M,, M j; are definite functions of the r’s and ¢ and hence of the ¢’s
and ¢. In fact, a comparison shows that

M= "mot L, (1.72)
1

and

dr;  Or;
M, = E Ry — .
a ; la% gk

Thus, the kinetic energy of a system can always be written as the sum of three
homogeneous functions of the generalized velocities,

=T+ T +1 (1.73)

where Ty is independent of the generalized velocities, T} is linear in the velocities,
and T; is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time
(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and 7 is
always a homogeneous quadratic form in the generalized velocities.

Let us now consider simple examples of this procedure:

1. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

2. Atwood’s machine
3. Time-dependent constraint—bead sliding on rotating wire

1. (2) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.33) are obviously Fx, Fy, and F;. Then
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g = 8—);- = ? = 0,
aT _ ; aT R oT
ax =m H a).) - ys a - mZa
and the equations of motion are
d d d
—_ ) — s — v) = F., — 7y = F,. .
77 %) = Fx M =F, m)=F, (1.74)

We are thus led back to the original Newton’s equations of motion.

(b) Motion of one particle: using plane polar coordinates. Here we must ex-
press T in terms of 7 and 8. The equations of transformation, i.e., Egs. (1.38), in
this case are simply

x =rcosf
y =rsind.
By analogy to (1.46), the velocities are given by
i =7cosf —rfsind,
§ =Fsinf +rfcosh.
The kinetic energy T = %m(.ifz + 72) then reduces formally to
T =m[i?+ (r6)"]. (1.75)

An alternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are # along r, and 6 along the direction per-
pendicular to 7, denoted by the unit vector n. Hence, the square of the velocity
expressed in polar coordinates is simply 7 + (+6)>. With the aid of the expression

dr = tdr +r0do +kdz

for the differential position vector, dr, in cylindrical coordinates, where f and
@ are unit vectors in the r and @-directions, respectively, the components of the
generalized force can be obtained from the definition, Eq. (1.49),
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rAfn

r(6+A8)

FIGURE 1.6 Derivative of r with respect to 6.

since the derivative of r with respect to 6 is, by the definition of a derivative, a
vector in the direction of @ (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the » equation
are

aT 2 oT _ d (3T -
- = 6, — = r., vl el v,
ar " ar de \ a7 "

and the equation itself i«
mi — mré* = F,,

the second term being the centripetal acceleration term. For the 8 equation, we
have the derivatives

9T a1 2 d [ 5. 25 s

— =0, — =mr-o, —(mr 9)=mr9+2mrr9,

a6 a6 dt
0 that the equation becomes

d . " .

p (mr29) = mr28 + 2mri@ = r Fp.

Note that the left side of the equation is just the time derivative of the angular
momenturi, and the right side is exactly the applied torque, so that we have simply
rederived the torque equation (1.26), where L = mr26 and N = r Fy.

2. Atwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic. scleronomous constraint (the pulley is assumed frictionless and
massless). Clearly there is only one independent coordinale x, the position of
the other weight being determined by the constraint that the length of the rope
between them is [. The potential energy is

V=—Mgx—Mgl-x),
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Mz_!

FIGURE 1.7 Atwood’s machine.

while the kinetic energy is
T =1+ My it
Combining the two, the Lagrangian has the form
L=T-V=1M +M)x*+ Mgx + Mgl —x).

There is only one equation of motion, involving the derivatives

6L
X
aL .
ax

so that we have
My +M)X =My — M) g,

or
. M —M
Ii=——"g,
My 4+ M,

which is the familiar result obtained by mote elementary means. This trivial prob-
lem emphasizes that the forces of constraint—here the temnsion in the rope—
appear nowhere in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangian method.

3. A bead (or ring) shding on a uniformly rotating wire in a force-free space.
The wire is straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint
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being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X =rcoswt. (@ = angular velocity of rotaticn)
y=rsinwt. (r = distance along wire from rotation axis)
While we could then find 7 (here the same as L) by the same procedure used to

obtain (1.71), it. is simpler to take over (1.75) directly, expressing the constraint
by the relation 8 = w:

T= m(f'2+r2 2).

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now an additional term not involving 7. The equation of motion is
then

=

P ]
mr=mrw =0
or
v 2
F=row’,

which 1s the familiar simple harmonic oscillator equation with a change of sign.
The solution r = e*' shows that the bead moves exponentially outward because
of the centripetal acceleration. Again, the method cannot furnish the force of con-
straint that keeps the bead on the wire. Equation (1.26) with the angular momen-
tum, L = mrw?e® . provides the force F = N/r, which produces the constraint
force, F = mrw?e®”, acting perpendicular to the wire and the axis of rotation.

DERIVATIONS

1. Shew that for a single particle with constant mass the equation of motion implies the
following differential equation for the kinetic energy:

dT
Z_ ~F.v,
dr v
while if the mass varies with time the corresponding equation is
d(mT)
dt F

2. Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

1
2 nl
MR =My myrl — =% immr.
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3.

80

Suppose a system of two particles is known to obey the equations of motion, Eqgs.
(1.22) and (1.26). From the equations of the motion of the individual particles show
that the internal forces between particles satisfy both the weak and the strong laws
of action and reaction The argument may be generalized to a system with arbitrary
number of particles, thus proving the converse of the arguments leading to Egs. (1.22)
and (1.26).

- The equations of constraint for the rolling disk, Egs. (1.39), are special cases of gen-

erzl Iinear differential equations of constraint of the form

n
Eg, (x1s . xp)dx, =0.
=1

A constraint condition of this type is holonom:ic only if an integrating function
fCxy, ..., xp) can be found that turns it into an exact differential. Clearly the func-
tion must be such that

3 (fg) _ 9(fg;)

ox,; ax,

forall i % j. Show that no such integrating factor can be found for either of Egs.
(1.39).

Two wheels of radius ¢ are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping on
a plane. Show that therz are two nonholonomic equations of constraint,

cosfdx +sinfdy =0
sinfdx — cosOdv = 1a (d¢ + d¢'),

(where 6, ¢, and ¢’ have meanings similar to those in the problem of a single vertical
disk, und (x, ¥) are the coordinates of a point on the axle midway between the two
wheels) and one holonomic equation of constraint,

a I
9=C—Z@—¢l

where C is a constant,

A particle moves 1n the xy plane under the constraint that its velocity vector is al-
ways ditected towards a point on the x axis whose abscissa is some given function of
time f(z). Show thal for f(¢) differentiable, but otherwise arb.trary, the constraint is
notholonomic.

. Show that Lagrange’s equations in the form of Egs. (1.53) can also be written as

T aT
- —2—=0,.
34; 3q, 4

These are sometimes known as the Nielsen form of the Lagrange equations.

If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equa-
tions, show by direct substitution that
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10.

dF(gy.....qn, 1)

U=L
+ ar

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable, func-
tion of its arguments.

The electromagnetic field is invariant under a gauge transformation of the scalar and
vector potential given by

A= A+Vy(@, 1),

. Oy
A
where ¥ 15 arbitrary (but differentiable), What effect does this gauge transformation
have on the Lagrangian of a particle moving in the electromagnetic field? Is the motion

affected?

Let gy, ....qn be a set of independent generalized coordinates for a system of n
degrees of freedom, with a Lagrangian L(q, ¢, t). Suppose we transform to another
set of independent coordinates 51, .. ., s, by means of transformation equations

ql=ql(s|i"-s~sn!t)v 1=1,...,n.

(Such a transformation is called a powmt transformation.) Show that if the Lagrangian
function is expressed as a function of 5;, §,, and ¢ through the equations of transfoi-
mateon, then L satisfies Lagrange’s equations with respect to the s coordinates:

d (BL) oL -0
dt 8.&1 8.91

In other words, the form of Lagrange’s equations js invariant under a pont transfor-
mation.

EXERCISES

11.

12

13.

Consider a uniform thin disk that rolls without slipping on a horizontal plane. A hori-
zontal force is applied to the center of the disk and in a direction parallel to the plane
of the disk.

(a) Denve Lagrange’s equations and find the generalized force.

(b) Discuss the motion If the force is not applied parallel to the plane of the disk.

The escape velocity of a particle on Earth is the minimum velocity required at Earth’s
surace in order that the particle can escape from Earth’s gravitationa] field. Neglecting
the resistance of the atmosphete, the system is conservative. From the conservation
theuremn for potenual plus kinetic energy show that the escape velocity for Earth,
1gnoring the presence of the Moon, is 11.2 km/s.

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket, the
mass of (he rocket is not constant, but decreases as the fuel is expended. Show that the
equation of motion for a rocket projected vertically upward in a uniform gravitational
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14,

15.

16.

17.

18.

field, neglecting atmospheric friction, 1s

where m 15 the mass of the rocket and v’ is the velocity of the escaping gases relative to
the rocket. Integrate this equation to obtain v as a function of m, assuming a cons-ant
time rate of loss of mass. Show, for a rocket starting initially from rest, with v’ equal
t0 2.1 m/s and a mass loss pei second equal to 1/60th of the initial mass, that in order
to reach the escape velocity the ratio of the weight of the fuel Lo the weight of the
empty rocket must be almost 300!

Two points of mass m are joined by a ngid weightless rod of length {, the center of
which is constrained to move on a circle of radius a. Express the kinetic energy 1n
generalized coordinates.

A point particle moves in space under the influence of a force derivable from a gener-
alized potential of the form

Ua,vW=V(@)+wou-L,

where r is the radws vector from a fixed point, L 1s the angular momentum about that

point, and o is a fixed vector in space.

(ar Find the components of the force on the particle m both Cartesian and sphencal
polar coordiates, on the basis of Eq. 11.58).

(b) Show that the components 1n the two coordinate systems wre related to each other
as 1n Eq. (1.49).

(¢} Obtain the equations of motion in sphencal polar coordinates.

A particle moves in a plane under the influence of a force, acting toward a center of
force, whose magnituce 15
po L, P2
2 o2 '

where 7 15 the distance of the particle to the center of force. Find the generalized
potential that will resuit in such a force, and from that the Lagrangan for the motion
1 a plane. (The expression for F represents the force between Lwo charges in Weber’s
electrodynarnics.)

A nucleus. originally at rest, decays radiozctively by emutting an electron of momen-
tum 1.73 MeV/c, and at right angles to the direction of the eleciron a neutrino with
momentum [.00 MeV/e. (The MeV, million electron volt, is a unit of energy used
in modern physics, equal to 1.60 x 10~!3 J. Correspondingly, MeV/c 1s a unit of
linzar momentum equal to 5.34 x 10722 kg-m/s.) In what direction does the nu-
cleus recoil? What is _ts momentum 1n MeV/c? If the mass of the residual nucleus
is 3.90 x 10~25 kg what is its kinctic cnergy. in electron volis?

A Lagrangian for a particular physical system can be wntten as
m S K
L= N (ai-z + 2bxy + cyz) -3 (ax2 +2bxy + cyz) ,

where a, b, and ¢ are arbitrary constants but subject to the condition that 52 — ac #0.



Exercises 33

19,

20.

21.

22,

23.

What are the equations of motion? Examme particularly the two casesa = 0 = ¢
and b = 0, ¢ = —a. What is the physical system described by the above Lagrangian?
Show that the usual Lagrangian for this system as defined by Eq. (1.57’) is related
to L' by a point transformation (cf. Derivation 10). What is the significance of the
condition on the value of % — ac?

Obtain the Lagrange equations of motion for a spherical pendulum, i.e., a mass point
suspended by a rigid weightless rod.

A particle of mass m moves in one dimension such that 1t has the Lagrangian

2.4
L= ml;— + mer(x) — Va(x),
where V is some differentiable function of x. Find the equation of motion for x(¢) and

describe the physical nature of the system on the basis of this equation

Two mass points of mass m1 and my are connected by a strng passing through a
hole in a smooth table so that s rests on the table surface and m hangs suspended.
Assaming mp moves only in a vertical line, what are the generalized coordinates lor
the system? Write the Lagrange equations for the system and, if possible, discuss
the physical significance any of them might have. Reduce the problem to a single
second-order differential equation and obtain a first integral of the equation. Wha is
its physical significance? (Consider the motion only until m reaches the hole.)

Obtain the Lagrangian and equations of metion for the double pendulum dlustratec in
Fig 1.4, where the lengths of the pendula are ; and I with comesponding masses »zy
and ms.

Obtain the equation of motion for a particle falling vertically under the influence of
gravity when frictional forces obtainable from a dissipation function %kv2 are present.
Integrate the equation to obtain the velocity as a function of nme and show that the
maximum possible velocity for a fall fromrest is v = mg/k.

. A spring of rest length L, (no tension) is connceted to a support at one end and has

a mass M attached at the other. Neglect the mass of the spring, the dimension of the
mass M, and assume that the motion 1s confined to a vertical plane. Also, assume that
the spring only stretches without bending but it can swing 1n the plane.

(a) Using the angular displacement of the mass from the vertical and the length that
the string has stretched from its rest length (hanging with the mass m), find La-
grange’s eqnations.

(b} Solve these equations for small stretching and angular displacements.

(¢ Solve the equations in part (a) to the next order in both stretching and angular
displacement. This part is amenable to hand calculations. Using some reasonable
assumplions about the spring constan, the mass, and the rest length, discuss the
motion. Is a resonance likely under the assumptions statec in the problem?

(d) (For analytic computer programs.) Consider the spring to have a total mass
m & M. Neglecting the bending of the spring, set up Lagrange’s equations
correctly to first order in m and the angular and linear displacements.

(&) (For numerical computer analysis.) Make sets of reasonable assumptons of the
constants 1n part (a) and make a single plot of the two coordinates as functions of
time.
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Variational Principles and
Lagrange’s Equations

2.1 @ HAMILTON’S PRINCIPLE

34

The derivation of Lagrange’s equations presented in Chapter | started from a
consideration of the instantaneous state of the system and small virtual displace-
ments about the instantaneous state, i.e., from a “differential principle” such as
D’ Alembert’s principle. It is also possible to obtain T.agrange’s equations from a
principle that considers the entire motion of the system between times 7} and £2,
and small virtual variations of this motion from the actual motion. A principle of
this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times #) and #,” must first be stated in more pre-
cise language The instantaneous configuration of a system is described by the
values of the n generalized coordinates gy, . . ., g,, and corresponds to a particu-
lar pomnt in a Cartesian hyperspace where the ¢’s form the n coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes on,
the state of the system changes and the system point moves in configuration space
tracing out a curve, described as “the path of motion of the system.” The “motion
of the system,” as used above, then refers to the motion of the system point along
this path in configuration space. Time can be considered formally as a parame-
ter of the curve; to each point on the path there is associated one or more values
of the time. Note that configuration space has no necessary connection with the
physical three-dimensional space, just as the generalized coordinates are not nec-
essarily position coordinates. The path of motion in configuration space has no
resemblance to the path in space of any actual particle; each point on the path
represents the entire system configuration at some given instant of time.

The integral Hamilton’s principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and time. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilton’s principle can be stated as

The maotion of the system from time 1) to time t; is such that the line
integral (called the action or the action integral),
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L7}
I=f Ldt, (2.1}
h

where L = T — V, has a stationary value for the actual path of the
motion.

That is, out of all possible paths by which the system point could travel from
its position at time f; to its position at time f, it will actually travel along that
path for which the value of the integral (2.1) is stationary. By the term “station-
ary value” for a line integral, we mean that the integral along the given path has
the same value to within first-order infinitcsimals as that along all neighboring
paths (L.e., those that differ from it by infinitesimal displacements). (Cf. Fig. 2.1.)
The notion of a stationary value for a line integral thus corresponds in ordinary
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral 7 for fixed t; and #; is zero:

i
51=af L@G1seeesGnrGlsenerdn,t)dt =0. 22)
n

Where the system constraints are holonomic, Hamilton’s principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Eqs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton's principle, as being the mors important theorem.
That Hamilton’s principle is a sufficient condition for deriving the equations of
motior enables us to construct the mechanics of monogenic systems from Hamil-
ton’s principle as the basic postulate rather than Newton’s laws of motion. Such
a formulation has advantages; e g, since the infegral 7 is obviously invariant to
the system of generalized coordinates used to express L, the equations of motion
must always have the Lagrangian form no matter how the generalized coordinates

X

FIGURE 2.1 Path of the system point in configuration space.
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are transformed. More important, the formulation in terms of a variational prin-
ciple 1s the route that is generally followed when we try to describe apparently
nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.

SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
calculus is to find the curve for which some given line integral has a stationary
value.

Consider first the problem in an essentially one-dimensional form: We have a
function f(y.y, x) defined on a path y = y(x) between two values x; and x3,
where ¥ is the derivative of y with respect to x. We wish to find a particular path
y(x) such that the line integral J of the function f between x| and x2,

]

Y=
x2

J=/ f(, 3. x)dx, 2.3
x1

has a stationary value relative to paths differing infinitesimally from the correct
function y(x). The variable x here plays the role of the parameter ¢, and we con-
sider only such varied paths for which y(x1) = y1, y(x2) = y2. (Cf. Fig. 2.2.)
Note that Fig. 2.2 does not represent configuration space. In the one-dimensional
configuration space, both the correct and varied paths are the segment of the
straight line connecting y; and y»; the paths differ only in the functional rela-
tion between y and x. The problem is one-dimensional. v is a function of x not a
coordinate.

y (xzxyz)

xry)

X

FIGURE 2.2 Varied paths of the function of y(x) in the one-dimensional extremum
ptoblem.
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We put the problem in a form that enables us to use the familiar apparatus of
the differential calculus for finding the stationary points of a function. Since J
must have a stationary value for the correct path relative to any neighboring path,
the variation must be zero relative to some particular set of neighboring paths
labeled by an infinitesimal parameter . Such a set of paths might be denoted by
y(x, ), with y(x, 0) representing the correct path. For example, if we select any
function n(x) that vanishes at x = x; and x = x3, then a possible set of varied
paths is given by

y(x, o) = y(x,0) + an(x). @24

For simplicity, it is assumed that both the correct path y(x) and the auxiliary
function 7{x) are well-behaved functions—continuous and nonsingular between
x1 and x7, with continuous first and second derivatives in the same interval. For
any such parametric family of curves, J in Eq. (2.3) is also a function of a:

X2
J(@) = f fO(x, @), y(x,a),x) dx. (2.5)
x)
and the condition for obtaining a stationary point is the familiar one that
dJ
(&) =0 .6)
dex a=0
By the usual methods of differentiating under the integral sign, we find that
dJ * (af day af oy
pud 2 2 4 L2 dx. 2.7
do _/,;, (3y30:+8)33a x @7)

Consider the second uf these integrals.

f"l 3f 8y f 8f 8%y
—_— dx = el dx
y, 0y da n 0y dxdo

Integrating by parts, the integral becomes

X2 2. X2 X2
f 8 &y 4 U -f i(a—’f)a—ydx. 2.8)
o 0y dxda dy da X x, dx \9y/ da

The conditions on all the varied curves are that they pass through the po:nts
(x1, y1), (x2, y2), and hence the partial derivative of y with respect to o at x; and
xp must vanish. Therefore, the first term of (2.8) vanishes and Eq. (2.7) reduces to

y_[(Lodiny,

do x, \dy dxdy/ da )
The condition for a stationary value, Eq. (2.6), is therefore equivalent to the equa-
tion
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*2 (9 da 0
f (_f _ __f) (_y) dx =0, 29
a \9dy dxdy/\da/,
Now, the partial derivative of y with respect to o occurring in Eq. (2.9) is a
function of x that is arbitrary except for continuity and end point conditions. For
example, for the particular parametric family of varied paths given by Eq. (2.4),

it is the arbitrary function n(x). We can therefore apply to Eq (2.9) the so-called
“fundamental lemma” of the calculus of variations, which says if

X2
/ M(@x)nx)dx =0 (2.10)
x|

for all arbitrary functions n(x) continuous through the second derivative, then
M (x) must identically vanish in the interval (xi, x2). While a formal mathemat-
ical proof of the lemma can be found in texts on the calculus of variations, the
validity of the lemma is easily seen intuitively. We can imagine constructing a
function 7 that is positive 1n the immediate vicinity of any chosen point in the
interval and zero everywhere else. Equation (2.10) can then hold only if M(x)
vanishes at that (arbitrarily) chosen point. which shows M must be zero through-
out the interval. From Eq. (2.9) and the fundamental lemma, it therefore follows
that J can have a stationary value only if

af d [(df
= ——{(=Z\=0. 211
dy dx (ay) 0 21D
The differential quantity,
(a_y) do = 8y, 212)
da J g

represents the infinitesimal departure of the varied path from the correct path j (x)
at the point x and thus corresponds to the virtual displacement introduced in Chap-
ter 1 (hence the notation 8y). Similarly, the infinitesimal variation of J about the
correct path can be designated

o

(d—J) doe=2§J. (2.13)
da Jo
The assertion that J is stationary for the correct path can thus be written

% (3f  d df
8] = = — — — }8ydx — (,
fxl (ay dxas») yex

requiring that y(x) satisfy the differential equation (2.11). The §-notation, intro-
duced through Eqs. (2.12) and (2.13), may be used as a convenient shorthand
for treating the variation of integrals, remembering always that it stands for the
manipulation of parametric families of varied paths such as Eq. (2.4).
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Some simple examples of the application of Eq. (2.11) (which clearly
resembles a Lagrange equation) may now be considered:

1. Shortest distance between two points in a plane. An element of length in a

plane is
ds = \/dx? + dy?

and the total length of any curve going between points 1 and 2 is
2 X2 2
1= [as= "1+ (2) o
1 x) dx

The condition that the curve be the shortest path is that / be a minimum. This is
an example of the extremum problem as expressed by Eq. (2.3), with

f= 1+ ).72.
Substituting in (2.11) with
f g H__ ¥
ady 8 1452
we have
d ¥y
dx \/1+ 52
or

where ¢ is constant. This solution can be valid only if
y=a,

where « is a constant related to ¢ by

C
a =

i

1-c¢

But this is clearly the equation of a straight line,

y=ax+b,
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where b is another constant of integration. Strictly speaking, the straight line has
only bezn proved to be an extremum path, but for this problem it is obviously also
a minimum. The constants of integration, ¢ and b, are determined by the condition
that the curve pass through the two end points, (x1. 1), (x2, y2).

In a similar fashion we can obtain the shortest distance between two points
on a sphere, by setting up the arc length on the surface of the sphere in terms of
the angle coordinates of position on the sphere In general, curves that give the
shortest distance between two points on a given surface are called the geodesics
of the surface.

2. Minimum surface of revolution. Suppose we form a surface of revolution
by taking some curve passing between two fixed end points (xy, y1) and (x2, y2)
defining the xy plane, andrevolving it about the y axis (cf. Fig. 2.3a). The problem
then is to find that curve for which the surface area is a minimum. The area of a
strip of the sutface is 27wx ds = 27x+/1 + y2 dx, and the total area is

2
27 f xy 1+ y2dx.
i
The extremum of this integral is again given by (2.11) where

F=x1+32
and

of o __xy

Wy 5 JitRn

Equation (2.11) becomes in this case

—X

FIGURE 2.3a Minimum sutface of revolution. Note that this figure is drawn for y; and
¥ having the same sign relative to the rotation axis. This is not assumed in the general
solution.
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i(x_i')zo
dx \ /142
or
x3
St

where a is some constant of integration clearly smaller than the minimum value
of x. Squaring the above equation and factoring terms, we have

7262 - a?) = a?,
or solving,

dy a

dx — JxZ g%

The general solution of this differential equation, in light of the nature of a, is

+b=aarccosh£+b
a

_af dx
¢ NS

or

b
x=acc)shy )
a

which is the equation of a catenary. Again the two constants of integration,  and
b, are determined in principle by the requirements that the curve pass through the
two given end points, as shown in Fig. 2.3b.

Curves satistying the preceding equation all scale as x/a and y/a with one
independent parameter b/a. This suggests that when the solutions are examined
in detail they turn out to be a great deal more complicated than these considera-

X35 ¥p)

(x1: )

a X

FIGURE 2.3b General catenary solution for minimum surface of revolution.
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tions suggest. For some pairs of end points, unique constants of integration ¢ and
b can be found. But for other end points, it is possible to draw two different cate-
nary curves through the end points, while for additional cases no possible values
can be found for @ and b. Further, recall that Eq. (2.11) represents a condition
for finding curves y(x) continuous through the second derivative that render the
integral stationary. The catenary solutions therefore do not always represent min-
imum values, but may represent “inflection points” where the length of the curve
is stationary but not minimum.,

For certain combinations of end points (an example is x1 and x2 both posi-
tive and both much smaller than y, — y;}, the absolute minimum in the surface
of revolution is provided (cf. Exercise 8) by a curve composed of straight line
segments—from the first end point parallel to the x axis until the y axis is reached,
then along the y axis until the point (0, y;) and then out in a straight line to the
second end point corresponding to the area 71'()«:12 + x%). This curve results when
a = 0, forcing either x = 0 or y = constant. Since this curve has discontinuous
first derivatives, we should not expect to find it as a solution to Eq. (2.11).

This example is valnable in emphasizing the restrictions that surround the
derivation and the meaning of the stationary condition. Exercises 7 and 8 exam-
ine the conditions for the pathological behavior for a symmetric example. More
information can be found in many texts on the calculus of variations.

3. The brachistochrone problem. (See Fig. 2.4a.) This well-known problem is
o find the curve joining two points, along which a particle falling from rest under
the influence of gravity travels from the higher to the lower point in the least time.

If v is the speed along the curve. then the time required to fall an arc length ds
is ds/v, and the problem is to find a minimum of the integral

2 ds
fio = —.
v

|

l 2

FIGURE 24a The brachistochrone problem.
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If v is measured down from the initial point of release, the conservation theorem
for the energy of the particle can be written as

1,2
MV° = mgy

or

= v2gy.

Then the expression for ¢)2 becomes

21+ y
Iy = X,
1 2gy
and f is identified as

2

14y
28y

f=

The integration of Eq. (2.11) with this form for f is straightforward and is left as
an exercise.
The solution in terms cf its one parameter, a, given by

Y 1 —cos [x +y(Q2a —y)]
a a ’

is sketched in Fig. 2.4b for the first cycle (0 < x < 2ma) and the beginning of the
second cycle. Three cases of solutions are indicated. A power-series expansion of
the solution for the limit y « a gives
T — x2 z
y= ) a.
The brachistochrone problem is famous in the history of mathematics, for it
was the analysis of this problem by John Bernoulli that led to the formal founda-
tion of the calculus of vanations.

X ¥ Ta 2ra
]
o N2 K2 X332 ¥,
2o+ -
K= 1N
3c
¥

FIGURE 2.4b Catenary solution to the brachistochrone problem showing positions on
the curve for the three cases 17 < 2, X2 = % y2, and x3 > yp
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DERIVATION OF LAGRANGE’S EQUATIONS
FROM HAMILTON'S PRINCIPLE

The fundamental problem of the calculus of variations is easily generalized to the
case where f is a function of many independent variables );, and their derivatives
yi. (Of course, all these quantities are considered as functions of the parametric
variable x.) Then a variation of the integral J,

2
57 =5 f] £ 3206, 22 91 (0): F25)s - x) i, 2.14)

is obtained, as before, by considering J as a function of parameter ¢ that labels a
possible set of curves y; (x, @). Thus, we may introduce a by setting

y1(x, @) = y1(2, 0) + ani(x),
y2(x, @) = y2(x, 0) + anz(x), (2.15)

where y) (x, 0), y2(x, 0), etc., are the solutions of the extremum problem (o be
obtained) and 1,, 2, etc., are independent functions of x that vanish at the end
points and that are continuous through the second derivative, but otherwise are
completely arbitrary.

The calculation proceeds as before. The variation of J 1 given in terms of

af 3 3f
— d = —du } dx. 2.16
“= fz(ay,aa 35, 50 ) @9
Again we integrate by parts the integral involved in the second sum of Eq. (2.16):

2af 3y A P oy d (9f )
- dx = - dx,
1 0y 0o dx v, Ba 1 o dx 0V

where the first term vanishes because all curves pass through the fixed end points.
Substituting in (2.16), 5J becomes

8f d of
8J = —— - ——— | én, dx, 2.17
fz,:(ay, dxay'r) e .
where, in analogy with (2.12), the variation 8y; is

J
Sys = (_&) da.
[2]v'4 0

Since the y variables are independent, the variations Jy; are independent {(e.g.,
the functions 7,(x) will be independent of each other). Hence, by an obvious
extension of the fundamental lemma (cf. Eq. (2.10)), the condition that §J is zero
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requires that the coefficients of the §y; separately vanish:
— ————=0, i=12,...,n (2.18)

Equations (2.18) represent the appropriaie generalization of (2.11) to several
variables and are known as the Euler-Lagrange differential equations. Their so-
lutions represent curves for which the variation of an integral of the form given
in (2.14) vanishes. Further generalizations of the fundamental variational problem
are easily possible. Thus, we can take f as a function of higher derivatives ¥, ,
etc., leading to equations different from (2.18). Or we can extend it to cases where
there are several parameters x, and the integral is then multiple, with f also in-
volving as variables derivatives of y, with respect to each of the parameters x;.
Finally, 1t is possible to consider variations in which the end points are not held
fixed.

For present purposes, what we have derived here suffices, for the integral in
Hamilton’s principle,

2
I=/ L(g;,q,.1)dt, (2.19)
1

has just the form stipulated in (2.14) with the transformation
x—>1

B =>4
F, 5. x) = Lgi, G, 2).

In deriving Eqgs. (2.18), we assumed that the y, variables are independent. The
corresponding condition m connection with Hanulton’s principle is that the gen-
eralized coordinates ¢; be independent, which requires that the constraints be
holonomic. The Euler-Lagrange equations corresponding to the integral I then
become the Lagrange equations of motion,

and we have accomplished our original aim, to show that Lagrange’s equations
follow from Hamilton’s principle—for monogenic systems with holonomic con-
straints.

EXTENSION OF HAMILTON'’S PRINCIPLE
TO NONHOLONOMIC SYSTEMS

It is possible to extend Hamilton’s principle, at least in a formal sense, to cover
certain types of nonholonomic systems. In deriving Lagrange’s equations from
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either Hamilton’s or D’ Alembert’s principle, the requirement of holonomic con-
straints does not appear until the last step, when the variations ¢, are considered
as independent of each other, With nonholonomic systems the generalized coor-
dinates are not independent of each other, and it is not possible to reduce them
further by means of equations of constraint of the form f (g1, 42.....49x.1) =0.
Hence, it is no longer true that the g,’s are all independent.

Another difference that must be considered in treating the variational principle
is the manner in which the varied paths are constructed. In the discussion of Sec-
tion 2.2, we pointed out that 8y (or 8¢) represents a virtual displacement from a
point on the actual path to some point on the neighboring varied path. But, with
independent coordinates it is the final varied path that is significant, not how it is
constructed. When the coordinates are not independent, but subject to constraint
relations, it becomes important whether the varied path is or is not constructed by
displacements consistent with the constraints. Virtual displacements, in particular,
may or may not satisfy the constraints.

It appears that a reasonably straightforward treatment of nonholonomic sys-
tems by a variational principle is possible only when the equations of constraint
can be put in the form

fa(G1,-...qn 41-...4n) =0, (2.20)

when this can be done the constraints are called semi-holonomic. The index o
indicates that there may be more than one such equation. We will assume there
are m equations in all, i.e., ¢ = 1, 2, ....m. Equation (2.20) commonly appears
in the restricted form

> akdgr+au dt = 0. (2.20')
k

We might expect that the varied paths, or equivalently, the displacements con-
structing the varied path, should satisfy the constraints of Eq. (2.20). However, it
has been proven that no such varied path can be constructed unless Egs. (2.20)
are integrable, in which case the constraints are actually holonomic. A variational
principle leading to the correct equations of motion can nonetheless be obtained
when the varied paths are constructed from the actual motion by virtual displace-
ments.

The procedure for eliminating these extra virtual displacements is the method
of Lagrange underermined multipliers. If Eqs. (2.20) hold, then it is also true that

rofo =0, (2.21)
>

o=l

where the Ay, @ = 1, 2...., m, are some undetermined quantities, functions in
general of the coordinates and of the time ¢. In addition, Hamilton’s principle,

L
S f Ldt =0, (2.2)
|
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is assumed to hold for this semiholonomic system. Following the development of
Section 2.3, Hamilton's principle then implies that

2
JaL d oL
dt — — —— } &g, = 0. 2.22
/1 Ek:(BCIk . qu) 9k (2.22)

The variation cannot be taken as before since the gy are not independent; however,
combining (2.21) with (2.2) gives

b2 m
3/2 (L+Zkafa) dt =0 (2.23)
n

o=1

The variation can now be performed with the n 8¢, and m A, for m+n independent
variables. For the simplifying assumption that A, = 4,(z), the resulting equations
from 8¢, become*

d (8L AL
4 (8L oL 224
dr (aék) o = & (224)
where
= fy d [ofy drg 3y
=Y g | e J 2 ()| _Zallal 2,25
Qi ;[“[aqk dt(aqk)] a1 aq'k} @25

while the 8, give the equations of constraint (2.20), Equations (2.24) and (2.20)
together constitute n + m equations for n 4+ m unknowns. The system can now
be interpreted as an m + n holonomic system with generalized forces Q. The
generalization to Ay = Ay (g1, - ..+ Gn; §1, - - - » Gn; ) is straightforward.

As an example, let us consider a particle whose Lagrangian is

L=im (;ﬁ +3+ 52) —V(x,y.2) (2.26)
subject to the constraint

fE 3. ) =%y+ky=0 (2.27)

with k a constant. The resulting equations of motion are

" v 2. OV
" w .. 8V
my+)~x—kx+lx+—a;=0, (2.29)
V
mzZ + 8—— =0, (2.30)
0z

*). Ray, Amer. J. Phys. 34 (406-8), 1996.
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and the equation of constraint, (2.20), becomes
yx +ky=0.

In this process we have obtained more information than was originally sought.
Not only do we get the gi’s we set out to find, but we also get mA;’s. What is
the physical significance of the A;’s? Suppose we remove the constraints on the
system, but instead apply external forces @ in such a manner as to keep the
motion of the system unchanged. The equations of motion likewise remain the
same. Clearly these extra applied forces must be equal to the forces of constraint,
for they are the forces applied to the system so as to satisfy the condition of
constraint. Under the influence of these forces Q. the equations of motion are

1—8,5 _ 8L _ 0. (2.31)
dt ogr g
But these must be identical with Egs. (2.24). Hence, we can identify (2.25) with
Q. the generalized forces of constraint. In this type of problem we really do not
eliminate the forces of constraint from the formulation. They are supplied as part
of the answer.

Although it is not obvious, the version of Hamilton’s principle adopted here
for semiholonomic systems also requires that the constraints do no work in virtual
displacements. This can be most easily seen by rewriting Hamilton's principle in
the form

f2

12 2
] Ldt=8/ Tdt—S/ Udt =0. (2.32)
H I

fi

If the variation of the integral over the generalized potential is carried out by the
procedures of Section 2.3, the principle takes the form

n h aUu d (3U
Sf Tdt = f [— —— (-—)] Sqrdt; (2.33)
n t Zk: an dl aqk

or, by Eq. (1.58),

17) 2
) f Tdt=— / > Qwdqudr. (2.34)
H ook

In this dress, Hamilton’s principle says that the difference in the time integral of
the kinetic energy between two neighboring paths is equal to the negative of the
time integral of the work done in the virtual displacements between the paths.
The work involved is that done only by the forces derivable from the generalized
potential, The same Hamilton’s principle holds for both holonomic and semiholo-
nomic systems, it must be required that the additional forces of semiholonomic
constraints do no work in the displacements 8¢y This restriction parallels the ear-
lier condition that the virtual work of the forces of holonomic constraint also be
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zero (cf. Section 1.4). In practice, the restriction presents little handicap to the
applications, as many problems in which the semiholonomic formalism is used
relate to rolling without slipping, where the constraints are obviously workless.

Note that Eq. (2.20) is not the most general type of nonholonomic constraint;
e.g., it does not include equations of constraint in the form of inequalities. On
the other hand, it does include holonomic constraints. A holonomic equation of
constraint,

fla1,92.93, .- gn. 1) =0, (2.35)

is equivalent to (2.20) with no dependence on ¢x. Thus, the Lagrange multiplier
method can be used also for holonomic constraints when (1) it is inconvenient to
reduce all the ¢’s to independent coordinates or (2) we might wish to obtain the
forces of constraint.

As another example of the method, let us consider the following somewhat
trivial illustration—a hoop rolling, without slipping, down an inclined plane. In
this example, the constraint of “rolling” is actually holonomic, but this fact will
be immaterial to our discussion. On the other hand, the holonomic constraint that
the hoop be on the inclined plane will be contained implicitly in our choice of
generalized coordinates.

The two generalized coordinates are x, 6, as in Fig. 2.5, and the equation of
rolling constraint is

rdf = dx.

The kinetic energy can be resolved into kinetic energy of motion of the center
of mass plus the kinetic energy of motion about the center of mass:

T = 3Mi* + ;M6
The potential energy is
V =Mg(l - x)sing,

where { is the length of the inclined plane and the Lagrangian is

"~

9

FIGURE 2.5 A hoop rolling down an inclined plane.
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L=T-V
_M:e2+Mr292
T2 2

— Mg(l — x)sing. (2.36)

Since there is one equation of constraint, only one Lagrange multiplier A is
needed. The coefficients appearing in the constraint equation are:

ag =r,

ax = —] .
The two Lagrange equations therefore are

M% —Mgsing +1 =0, (2.37)
Mr%i — ar =0, (2.38)

which along with the equation of constraint,
rd =%, (2.39)

constitutes three equations for three unknowns, 8, x, .
Differentiating (2.39) with respect to time, we have

ré = x.
Hence, from (2.38)
Mx = A,
and (2.37) becomes
_ gsing
=—
along with
A= Mgsing
2
and
= gsing
0= T

Thus, the hoop rolls down the incline with only one-half the acceleration it would
have slipping down a frictionless plane, and the friction force of constraint is
A= Mgsing/2.
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2.5 W ADVANTAGES OF A VARIATIONAL PRINCIPLE FORMULATION

Although we can extend the original formulation of Hamilton’s principle (2.2) to
include some nonholonomic constraints, in practice this formulation of mechan-
ics is most useful when a Lagrangian of independent coordinates can be set up
for the system. The variational principle formulation has been justly described as
“elegant,” for in the compact Hamilton’s principle is contained all of the mechan-
ics of holonomic systems with forces derivable from potentials. The principle has
the further merit that it involves only physical quantities that can be defined with-
out reference to a particular set of generalized coordinates, namely, the kinetic
and potential energies. The formulation is therefore automatically invariant with
respect to the choice of coordinates for the system.

From the variational Hamilton’s principle, it is also obvious why the La-
grangian is always uncertain to a total time derivative of any function of the
coordinates and time, as mentioned at the end of Section 1.4. The time integral
of such a total derivative between points 1 and 2 depends only on the values of
the arbitrary function at the end points, As the variation at the end points is zero,
the addition of the arbitrary time derivative to the Lagrangian does not affect the
variational behavior of the integral.

Another advantage is that the Lagrangian formulation can be easily extended
to describe systems that are not normally considered in dynamics—such as
the elastic field, the electromagnetic field, and field properties of elementary
particles. Some of these generalizations will be considered later, but as three
simple examples of its application outside the usual framework of mechanics, let
us consider the cases of an RL circuit, an LC circuit, and coupled circuits.

We consider the physical system of a battery of voltage V in series with an
inductance L and a resistance of value R and choose the electric charge ¢ as
the dynamical variable. The inductor acts as the kinetic energy term since the
inductive effect depends upon the time rate of change of the charge. The resistor
provides a dissipative term and the potential energy is ¢ V. The dynamic terms in
Lagrange’s equation with dissipation (1.70) are

T=114% F=1R¢
and potential energy = ¢ V. The equation of motion is
V=Lj+Rg=LI+RI (2.40)

where | = ¢ is the electric current. A solution for a battery connected to the
circuit at time ¢ = 0 is

I=1Ip(1 — e R/Ey,

where Iy = V/R is the final steady-state current flow.
The mechanical analog for this is a sphere of radius ¢ and effective mass m’
falling in a viscous fluid of constant density and viscosity n under the force of
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gravity. The effective mass is the difference between the actual mass and the mass
of the displaced fluid, and the direction of motion is along the y axis. For this
system,

T=im's?, F=3anai’,

and potential energy = m’gy, where the frictional drag force, Fy = 6z nay, called
Stokes’ law, was given at the end of Section 1.5.
The equation of motion is given by Lagrange’s equations (1.70) as
m'g = m'$ + 6mnay.
Using v = y, the solution (if the motion starts from rest at ¢ = 0), is

v = v,(1 —e /%)

where T = m’/(6zna) is a measure of the time it takes for the sphere to reach
1/e of its terminal speed of vy = m’g/6m na.

Another example from electrical circuits is an inductance, L, in series with a
capacitance, C. The capacitor acts as a source of potential energy given by ¢2/C
where g is the electric charge. The Lagrangian produces the equation of motion,

. . g
Li+==0, 2.41
q+C 0 (2.41)

which has the solution
g = 4o Cos wpt,

where g is the charge stored in the capacitor at t = 0, and the assumption is that
no charge is flowing at t = 0. The quantity

1

viC

is the resonant frequency of the system.
The mechanical analog of this system is the simple harmonic oscillator de-
scribed by the Lagrangian L = %miz - %kxz, which gives an equation of motion,

mx +kx =0,
whose solution for the same boundary conditions is
X = Xp COS wyf with wg = Vk/m.

These two examples show that an inductance is an inertial term, the electrical
analog of mass. Resistance is the analog of Stokes’ law type of frictional drag,
and the capacitance term 1/ C represents a Hooke’s law spring constant, With this
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FIGURE 2.6 A system of coupled circuits to which the Lagrangian formulation can be
applied.

background, a system of coupled electrical circuits of the type shown in Fig. 2.6
has a Lagrangian of the form

2
q
J#k !
and a dissipation function
I .9
.7:2 EgquJ.

where the mutual inductance terms, M4, 4i, are added to take into account the
coupling between inductors. The Lagrange equations are

L,%% Z R D _p . (2.42)

d TR C,

where the E, () terms are the external emf’s.

This description of two different physical systems by Lagrangians of the same
form means that all the results and techniques devised for investigating one of the
systems can be taken over immediately and applied to the other. In this particular
case, the study of the behavior of electrical circuits has been pursued intensely
and some special techniques have been developed; these can be directly applied
to the corresponding mechanical systems. Much work has been done in formuiat-
ing equivalent electrical problems for mechanical or acoustical systems, and vice
versa. Terms hitherto reserved for electrical circuits (reactance, susceptance, etc.)
are now commonly found in treatises on the theory of vibrations of mechanical
systems.
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Additionally, one type of generalization of mechanics is due to a subtler form
of equivalence. We have seen that the Lagrangian and Hamilton’s principle to-
gether form a compact invariant way of obtaining the mechanical equations of
motion. This possibility is not reserved for mechanics only; in almost every field
of physics variational principles can be used to express the “equations of motion,”
whether they be Newton’s equations, Maxwell’s equations, or the Schridinger
equation. Consequently, when a variational principle is used as the basis of the for-
mulation, all such fields will exhibit, at least to some degree, a structural analogy.
When the results of experiments show the need for alterating the physical content
in the theory of one field, this degree of analogy has often indicated how similar
alterations may be carried out in other fields. Thus, the experiments performed
early in this century showed the need for quantization of both electromagnetic
radiation and elementary particles. The methods of quantization, however, were
first developed for particle mechanics, starting essentially from the Lagrangian
formulation of classical mechanics. By describing the electromagnetic field by a
Lagrangian and corresponding Hamilton’s variational principle, it is possible to
carry over the methods of particle quantization to construct a quantum electrody-
namics (cf. Sections 13.5 and 13.6).

CONSERVATION THEOREMS AND SYMMETRY PROPERTIES

Thus far, we have been concerned primarily with obtaining the equations of mo-
tion, but little has been said about how to solve them for a particular problem
once they are obtained. In general, this is a question of mathematics. A system
of n degrees of freedom will have n differential equations that are second order
in time. The solution of each equation will require two integrations resulting, ail
told, in 2n constants of integration. In a specific problem these constants will be
determined by the initial conditions, i.e., the initial values of the ng ;’s and the
ng,’s. Sometimes the equations of motion will be integrable in terms of known
functions, but not always. In fact, the majority of problems are not completely
integrable. However, even when complete solutions cannot be obtained, it is often
possible to extract a large amount of information about the physical nature of the
system motion. Indeed, such information may be of greater interest to the physi-
cist than the complete solution for the generalized coordinates as a function of
time. It is important, therefore, to see how much can be stated about the motion
of a given system without requiring a complete integration of the problem.*

In many problems a number of first integrals of the equations of motion can be
obtained immediately; by this we mean relations of the type

flq.q2,....41.42, ..., t) = constant. (2.43)

*In this and succeeding sections 1t will be assumed, unless otherwise specified, the system 1s such that
its motion 1s completely described by a Hamilton’s principle of the form (2.2).
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which are first-order differential equations. These first integrals are of interest
because they tell us something physically about the system. They include, in fact,
the conservation laws obtained in Chapter 1.

Let us consider as an example a system of mass points under the influence of
forces derived from potentials dependent on position only. Then

3L 3T 8V 3T _ 3 1 Yy r
3%, 0% 8% % 8% 2’"'("'“*'“')

=mixy = Pix.

which is the x component of the linear momentum associated with the ith
particle. This result suggests an obvious extension to the concept of momentum.
The generalized momentum associated with the coordinate g, shall be defined as

aL

p, =22 (2.44)
] aq]

The terms canonical momentum and conjugate momentum are often also used for
p,. Notice that if g; is not a Cartesian coordinate, p, does not necessarily have
the dimensions of a linear momentum. Further, if there is a velocity-dependent
potential, then even with a Cartesian coordinate g, the associated generalized
momentum will not be identical with the usual mechanical momentum. Thus,
in the case of a group of particles in an electromagnetic field, the Lagrangian is
(cf. 1.63)

L= omi? ~ Y ade) + Y e -

(g; here denotes charge) and the generalized momentum conjugate to x, is

iy = % =m X + q Ax, (2.45)
ax,
i.e., mechanical momentum plus an additional term.

If the Lagrangian of a system does not contain a given coordinate g, (although
it may contain the corresponding velocity ¢,), then the coordinate is said to be
cyclic or ignorable. This definition is not universal, but it is the customary one
and will be used here. The Lagrange equation of motion,
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or

lJ}

dt =0,

which mean that

p; = constant. (2.46)

Hence, we can state as a general conservation theorem that the generalized mo-
mentum conjugate to a cyclic coordinate is conserved.

Note that the derivation of Eq. (2.46) assumes that ¢ is a generalized coordi-
nate; one that is linearly independent of all the other coordinates. When equations
of constraint exist, all the coordinates are not linearly independent. For exam-
ple. the angular coordinate @ is not present in the Lagrangian of a hoop roiling
without slipping in a horizontal plane that was previously discussed, but the angle
appears in the constraint equations rd6 = dx. As aresult, the angular momentum,
p¢ = mr28, 1s not a constant of the motion.

Equation (2.46) constitutes a first integral of the form (2.43) for the equations
of motion. It can be used formaily to eliminate the cyclic coordinate from the
problem, which can then be solved entirely in terms of the remaining general-
ized coordinates. Briefly, the procedure, originated by Routh, consists in modify-
ing the Lagrangian so that it is no longer a function of the generalized velocity
corresponding to the cyclic coordinate, but instead involves only its conjugate
momentum. The advantage in so doing is that p, can then be considered one of
the constants of integration, and the remaining integrations involve only the non-
cyclic coordinates. We shall defer a detailed discussion of Routh’s method until
the Hamiltonian formulation (to which it is closely related) is treated.

Note that the conditions for the conservation of generalized momenta are more
general than the two momentum conservation theorems previously derived. For
example, they furnish a conservation theorem for a case in which the law of ac-
tion and reaction is violated, namely, when electromagnetic forces are present.
Suppose we have a single particle in a field in which neither ¢ nor A depends on
x. Then x nowhere appears in L and is therefore cyclic. The corresponding canon-
ical momentum p, must therefore be conserved. From (1.63) this momentum now
has the form

Px = mi + qA, = constant. (2.47)

In this case, it is not the mechanical linear momentum mx that is conserved but
rather its sum with g A, .* Nevertheless, it should still be true that the conservation
theorems of Chapter 1 are contained within the general rule for cyclic coordinates;
with proper restrictions (2.46) should reduce to the theorems of Section 1.2.

¥]t can be shown from classical electrodynamics that under these conditions, 1.e., herther A nor ¢
depending on x, that g A is exactly the x-component of the electromagnetic linear momentum of the
field associated with the charge q.
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We first consider a generalized coordinate g,, for which a change dq, repre-
sents a translation of the system as a whole in some given direction. An example
would be one of the Cartesian coordinates of the center of mass of the system.
Then clearly g, cannot appear in T, for velocities are not affected by a shift in the
origin, and therefore the partial derivative of 7 with respect to ¢; must be zero.
Further, we will assume conservative systems for which V is not a function of the
velocities. so as to eliminate such complications as electromagnetic forces. The
Lagrange equation of motion for a coordinate so defined then reduces to

d aT av
—— =P, = —— = g! . 2.48
dr 8q, by aq, / (2.48)

We will now show that (2.48) is the equation of motion for the total linear
momentum, i.e., that Q, represents the component of the total force along the di-
rection of translation of g;, and p, is the component of the total linear momentum
along this direction. In general, the generalized force Q, is given by Eq. (1.49):

ar,
QJ - ,ZFl ° aq}-

Since dq,, corresponds to a translation of the system along some axis, the vectors
r.(g,) and r,(q, + dq,) are related as shown in Fig. 2.7. By the definition of a
derivative, we have

I, dg,)—r dg;
o Bl tde)-n(a) _da (2.49)
aql d(l1—>0 dq! dq.l

where n is the vnit vector along the direction of the translation. Hence,

QJ=ZF,-n=n~F,

which (as was stated) is the component of the total force in the direction of n. To
prove the other haif of the statement, note that with the kinetic energy in the form

FIGURE 2.7 Change in a position vector under translation of the system.
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T = -;- Zm,i‘f,

the conjugate momentum is

using Eq. (1.51). Then from Eq. (2.49)
p} =nN- Z m,V, N
12

which again, as predicted, is the component of the total system linear momentum
along n.

Suppose now that the translation coordinate g, that we have been discussing is
cyclic, Then ¢, cannot appear in V and therefore

av
oy =Q,;=0.
4,

But this is simply the familiar conservation theorem for linear momentum—that
if a given component of the total applied force vanishes, the corresponding com-
ponent of the linear momentum is conserved.

In a similar fashion, it can be shown that if a cyclic coordinate g, is such that
dq, corresponds to a rotation of the system of particles around some axis, then
the conservation of its conjugate momentum corresponds to conservation of an
angular momentum. By the same argument used above, T’ cannot contain g, for
a rotation of the coordinate system cannot affect the magnitude of the velocities.
Hence, the partial derivative of T with respect to g, must again be zero, and since
V is independent of ¢;, we once more get Eq. (2.48). But now we wish to show
that with g, a rotation coordinate the generalized force is the component of the
total applied torque about the axis of rotation, and p, is the component of the total
angular momentum along the same axis.

The generalized force @, is again given by

ar,
Q = K, - »
! ,Z " 8q

only the derivative now has a different meaning. Here the change in g; must cor-
respond to an infinitesimal rotation of the vector r;, keeping the magnitude of
the vector constant. From Fig. 2.8, the magnitude of the derivative can easily be
obtained:

|dr;| = r;sinf dg,
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-~
——

ri(ql +d‘l,)

FIGURE 2.8 Change of a position vector under rotation of the system.

and

= r,sind,

' ar,
dq,

and its direction is perpendicular to both r, and n. Clearly, the derivative can be
written in vector form as

M nxr. (2.50)

dg,
With this result, the generalized force becomes

0,=> F-nxr,

1
= Z n.r, x F,,
I
reducing to

Qj=n-Y N;=n-N,
1

which proves the first part. A similar manipulation of p, with the aid of Eq. (2.50)
provides proof of the second part of the statement:

aT ar
P g, T LMY g, T 2L E X = ) Li=n-L

1
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Summarizing these results, we see that if the rotation coordinate g, is cyclic,
then Q,, which is the component of the applied torque along m, vanishes, and
the component of L along n is constant. Here we have recovered the angular
momentum conservation theorem out of the general conservation theorem relating
to cyclic coordinates.

The significance of cyclic translation or rotation coordinates in relation to the
properties of the system deserves some comment at this point. If a generalized co-
ordinate corresponding to a displacement is cyclic, it means that a translation of
the system, as if rigid, has no effect on the problem. In other words, if the system
is tnvarignt under translation along a given direction, the corresponding linear
momentum is conserved. Similarly, the fact that a generalized rotation coordinate
is cyclic (and therefore the conjugate angular momentum conserved) indicates
that the system is invariant under rotation about the given axis. Thus, the momen-
tum conservation theorems are closely connected with the symmetry properties
of the system. If the system is spherically symmetric, we can say without further
ado that all components of angular momentum are conserved. Or, it the system is
symmetric only about the 7 axis, then only L, will be conserved, and so on for
the other axes. These symmetry considerations can often be used with relatively
complicated problems to determine by inspection whether certain constants of the
motion exist. (¢f. Noether’s theoremm—3Sec. 13.7.)

Suppose, for example, the system consists of a set of mass points moving in
a potential field generated by fixed sources uniformly distributed on an infinite
plane, say, the z = O plane. (The sources might be a mass distribution if the forces
were gravitational, or a charge distribution for electrostatic forces.) Then the sym-
metry of the problem is such that the Lagrangian is invariant under a translation
of the system of particles in the x- or y-directions (but not in the z-direction) and
also under a rotation about the z axis. It immediately follows that the x- and y-
components of the total linear momentum, Py and Py, are constants of the motion
along with L., the z-component of the total angular momentum. However, if the
sources were restricted only to the half plane, x > 0, then the symmetry for trans-
lation along the x axis and for rotation about the 7 axis would be destroyed. In that
case, Py and L; could not be conserved, but P, would remain a constant of the
motion. We will encounter the connections between the constants of motion and
the symmetry properties of the system several times in the following chapters.

ENERGY FUNCTION AND THE CONSERVATION OF ENERGY

Another conservation theorem we should expect to obtain in the Lagrangian for-
mulation is the conservation of total energy for systems where the forces are
derivable from potentials dependent only upon position. Indeed, it is possible to
demonstrate a conservation theorem for which conservation of total energy repre-
sents only a special case. Consider a general Lagrangian, which will be a function
of the coordinates g, and the velocities g, and may also depend explicitly on the
time. (The explicit time dependence may arise from the time variation of external
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potentials, or from time-dependent constraints.) Then the total time derivative of
Lis

L oL dqj aL dq, aL
— = . 251
Z dq, dt Z dg, dt ‘t 2>1)

aL 4 (AL
aqj_dt aq, )’

and (2.51) can be rewritten as

dL  ~~d (3L, oL dg, oL
dt_zdt( )q’+] 3g, ar T

From Lagrange’s equations,

or

It therefore follows that
d alL aL
ar (ZJ 154, ) T (2.52)

The quantity in parentheses is oftentimes called the energy function* and will be
denoted by A:

h(q14----q.n; q.ls'- ’CIn, t)—'Z(IJ__L (2.53)

and Eq. (2.52) can be looked on as giving the total time derivative of A:

ﬁ}l = aL (2.54)
dt az

If the Lagrangian is not an explicit function of time, i.e., it ¢ does not appear
in L explicitly but only implicitly through the time variation of g and g, then
Eq. (2.54) says that 4 is conserved. It is one of the first integrals of the motion and
is sometimes referred to as Jacobi’s integral.’

*The energy function # is identical in value with the Hamiltonian H (See Chupter 8) Tt 1s given
a different name and symbol here 1o emphasize that 4 15 considered a function of n independent
variables g; and their time derivatives ¢; (along with the tme), whereas the Hanultonian will be
treated as a function of 2n mdependent vanables, g, p; (and possibly the time)

¥This designation 18 most often confined to a first integral in the restncted three-body problem. How-
ever, the integral there is merely a special case of the energy function 4, and there is some histoncal
precedent to apply the name Jacobi integral to the more general sitvation
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Under certain circumstances, the function % is the total energy of the system.
To determine what these circumstances are, we recall that the total kinetic energy
of a system can always be written as

T=To+1T)+ 71, (1.73)

where T is a function of the generalized coordinates only, T; (g, ¢) is linear in the
generalized velocities, and T>(q, ¢) is a quadratic function of the §’s. For a very
wide range of systems and sets of generalized coordinates, the Lagrangian can be
similarly decomposed as regards its functional behavior in the g variables:

L(g.g.1)=Lo(g.0)+ Li1(g.4.1) + La(g. 4. ). (2.55)

Here L, is a homogeneous function of the second degree (not merely quadratic)
in g, while L is homogeneous of the first degree in 4. There is no reason intrinsic
to mechanics that requires the Lagrangian to conform to Eqg. (2.55), but in fact it
does for most probiems of interest. The Lagrangian clearly has this form when the
forces are derivable from a potential not involving the velocities. Even with the
velocity-dependent potentials, we note that the Lagrangian for a charged particle
in an electromagnetic fieid, Eq. (1.63), satisfies Eq. (2.55). Now, recall that Euler’s
theorem states that if f is a homogeneous function of degree » in the variables x,,
then

af
lzx,-E = nf. (2.56)

Applied to the function 4, Eq. (2.53), for the Lagrangians of the form (2.55), this
theorem implies that

h=2Lr+L;—L=1"Ly— Lg. (2.57)

If the transformation equations defining the generalized coordinates, Egs. (1.38),
do not involve the time explicitly, then by Egs. (1.73) T = T5. If, further, the
potential does not depend on the generalized velocities, then L = T and Lo =
-V, so that

h=T+V=E, (2.58)

and the energy function is indeed the total energy. Under these circumstances,
if V does not involve the time explicitly, neither will L. Thus, by Eq. (2.54), A
(which is here the total energy), will be conserved.

Note that the conditions for conservation of & are in principle quite distinct
from those that identify 4 as the total energy. We can have a set of generalized
coordinates such that in a particular problem £ is conserved but is not the total
energy. On the other hand, z can be the total energy, in the form T + V, but not
be conserved. Also note that whereas the Lagrangian is uniquely fixed for each
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system by the prescription
L=T-U

independent of the choice of generalized coordinates, the energy function # de-
pends in magnitude and functional form on the specific set of generalized co-
ordinates. For one and the same system, various energy functions % of different
physical content can be generated depending on how the generalized coordinates
are chosen.

The most common case that occurs in classical mechanics is one in which the
kinetic energy terms are all of the form mq,? [2or p,? /2m and the potential energy
depends only upon the coordinates. For these conditions, the energy function is
both conserved and is also the total energy.

Finally, note that where the system is not conservative, but there are frictional
forces derivable from a dissipation function F, it can be easily shown that F is re-
lated to the decay rate of 4. When the equations of motion are given by Eq. (1.70),
including dissipation, then Eq. (2.52) has the form

dh 4L aF .
@t~ g,

By the definition of F, Eq. (1.67), it is a homogeneous function of the ¢’s of
degree 2. Hence, applying Euler’s theorem again, we have

ﬂ=_2 aL

o s (2.59)

If L is not an explicit function of time, and the system is such that 4 is the same
as the energy, then Eq. (2.59) says that 2.F is the rate of energy dissipation,

dE
—_= 2 -
T F, (2.60)

a statement proved above (cf. Sec. 1.5) in less general circumstances.

DERIVATIONS

1. Complete the solution of the brachistochrone problem begun in Section 2.2 and show
that the desired curve is a cycloid with a cusp at the ininial point at which the particle
is released. Show also that if the particle is projected with an initial kinetic ensrgy
%mv% that the brachistochrone is still a cycloid passing through the two points with a

cusp at a height z above the initial point given by v(z) =2gz.

2. Show that if the potenuial in the Lagrangian contamns velocity-dependent terms. the
canonical momentum corresponding to a coordinate of rotation # of the entire system
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is no longer the mechanical angular momentum Lg but 1s given by

ps=Lg—) n-r, x Vy,U,
1

where Vy 1s the gradient operator in which the derivatives are with respect to the
velocity components and n is a unit vector in the direction of rotation. If the forces are
electromagnetic in character. the canonical momentum is thersfore

9
Po =L9+lZn-r, X ?A,-.
Prove that the shortest distance between two points m space is a straight line.

Show that the geodesics of a spherical surface are great circles, i.e., circles whose
centers he at the center of the sphere.

EXERCISES

5.

8‘

A particle 18 subjected to the potential V(x) = —Fx, where F 15 a constant. The
particle travels from x = 0 to x = a m a tume interval fy. Assume the motion of the
particle can be expressed in the formx(r) = A+ Br+C t2. Find the values of A, B,
and C such that the action is a minimum.

. Find the Evler-Lagrange equation describing the brachistochrone curve for a particle

moving inside a spherical Earth of uniform mass density. Obtain a first integral for
this differential equation by analogy to the Jacobr mtegral #. With the help of this
ntegral, show that the desired curve 15 a hypocycloid (the curve described by a point
on a circle rolling on the inside of a larger circle). Obtain an expression for the time
of travel along the brachistochrone between two points on Earth’s surface. How long
would 1t take to go from New York to Los Angeles (assuined to be 4800 km apart on
the surface) along a brachistochrone tunnel (assuming no friction) and how far below
the surface would the deepest point of the tunnel be?

In Example 2 of Section 2.1 we considered the problem of the mmimum surface of
revolution. Examine the symmetric case x; = x, y2 = —y] > 0, and express the
condition for the parameter a as a transcendental equation in terms of the dimension-
less quantities £ = xo/a, and o = y/x3. Show that for & greater than a certam value
ag lwo values of & are possible, for @ = @ only one value of k is possible, while if
o < ap no real value of k (or ) can be found, so that no catenary solution exists 1n
this region. Find the value of ap, numerically if necessary.

The broken-segment solution described in the text (cf. p. 42), in which the area of
revolution is only that of the end circles of radius y; and yj, respectively, is known as
the Goldschmidt solution. For the symmetric situation discussed in Exercise 7, obtain
an expression for the ratio of the area generated by the catenary solutions to that given
by the Goldschmidt solution. Your result should be a function only of the parameters
k and «. Show that for sufficiently large values of « at least one of the catenaries
gives an area below that of the Goldschmidt solution. On the other hand, show that if
a = w, the Goldschmidt solution gives a lower area than the catenary.
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9.

10.

11.

12.

A chain or rope of indefinite length passes freely over pulleys at heights y; and y,
above the plane surface of Earth, wath a horizontal distance x; — x| between them. If
the chain or rope has a umform linear mass density, show that the problem of finding
the curve assumed betrween the pulleys is identical with that of the problem of mini-
mum surface of revolution. (The transition to the Goldschmidt solution as the heights
¥ and y; are changed makes for a striking lecture demonstration. See Exercise 8.)

Suppose it is known expenmentally that a particle fell a given distance y; m a time
fo = /2yn/g, but the times of fall for distances other than yg 1s not known. Suppose
further that the Lagrangian for the problem is known, but that instead of solving the
equanon of motion for y as a function of ¢, it is guessed that the functional form is

y = at + b2,

If the constants a and b are adjusted always so that the time to fall yp is correctly
given by #g, show directly that the integral

1o
f Ldt
0

1s an extremum for real values of the coefficients only whena =0 and b = g/2.

When two billiard balls colhde, the instantaneous forces between them are very large
but act only in an infintesumal time A, in such a manner that the quantity

f Fdt
At

remains finite. Such forces are described as impulsive forces, and the integral over
At 15 known as the impuise of the force. Show that if impulsive forces are present
Lagrange’s equations may be transformed into

(3_L) _(ﬂ) =5
%,/ ; \dg;); "V

where the subscripts { and f refer to the state of the system before and after the
impulse, S, is the impulse of the generalized impulsive force corresponding to g,
and L is the Lagrangian including all the nonimpulsive forces.

The term generulized mechanics has come to designate a variety of classical mechan-
ics in which the Lagrangian contains time derivatives of g, higher than the first. Prob-
lems for which x = f(x, X, X, ) have been referred to as “jerky” mechanics. Such
equations of motion have interesting applications in chaos theory (cf. Chapter 11). By
applying the methods of the calculus of variations, show that if there 1s a Lagrangian
of the form L(g,, §;. §,.t), and Hamilton’s principle holds with the zero vatiation of
both g; and g, at the end points, then the corresponding Euler-Lagrange equations are

d® (8L d (3L oL
— | —=)——{— + — = 0. i=1,2,.., .
dr? (3‘]r) di (aQI) 4 "

Apply this result to the Lagrangian
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13.

14.

15.

16.

17,

L= m . k 2

Do you recognize the equations of motion?

A heavy particle 1s placed at the top of a vertical hoop. Calculate the reaction of
the hoop on the particle by meuns of the Lagrange’s undetermined multipliers and
Lagrange’s equations. Find the height at which the particic falls off.

A umform hoop of mass m and radus r rolls without slipping on a fixed cylinder
of radius R as shown in the figure. The only external force is that of gravity. If the
smaller cylinder starts rolling from rest on top of the bigger cylinder, use the method
of Lagrange mulipliers to find the point at which the hoop falls off the cylinder,

A form of the Whealstone impedance bridge has, in addition to the usual four resis-
tances. an inductance in one arm and a capacitance in the opposite arm. Set up L and
F for the unbalanced brdge. with the charges in the elements as coordinates. Using
the Karchhott junction conditions as constraints on the currents, oblamn the Lagrange
equations of motion, and show that ehminating the A’s reduces these to the usual net-
work equations.

In certain situations, particularly one-dimensional systems, 1t 18 possible (o incorpo-
rate frictional effects without introducing the dissipation function. As an example, find
the equations of motion for the Lagrangian

L =e¥f T_CI_Z._E
2 2 )

How would you describe the system? Are there any constants of motion? Suppose a
point transformation is made of the form

s=e"g.

What 1s the effective Lagrangian in terms of s? Find the equation of motion for .
What do these results say about the conserved quantities for the system?

It sometimes occuss that the generalized coordinates appear separately in the kinetic
energy and the potential energy in such a manner that T and V may be written in the
form

T=Y fig)g and V=) Vg
3 I
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18.

19.

20.

Show that Lagrange’s equations then separate, and that the problem can always be
reduced to quadratures.

A point mass is constrained to move on a massless hoop of radius a fixed 1n a vertical
plane that rotates about its vertical symmetry axis with constant angular speed w.
Obitain the Lagrange equations of motion assuming the only external forces arise from
gravity. What are the constants of motion? Show that if e 18 greater than a critical
value wp, there can be a solution m which the particle remains stationary on the hoop
at a point other than at the bottom, but that 1f & < wy, the only stationary point for the
particle is at the botiom of the houp. What is the value of wy?

A particle moves without friction in a conservative field of force produced by various
mass distributions. In each instance, the force generated by a volume element of the
distribution is derived from a potential that 1s proportional to the mass of the volume
element and 15 a function only of the scalar distance from the volume element. For the
following fixed, homogeneous mass distributions, state the conserved quantities in the
motion of the particle:

(a) The mass 1s uniformly distributed 1o the plane z = 0.
(b) The mass 1s uniformly distributed in the half-plane z = 0,3 > 0.

() The mass 18 umformly distnibuted in a circular cylinder of infimte length, with
axis along (he z axis.

(d) The mass 15 umiformly distnibuted in a circular cylinder of finite length, with axis
along the z axis.

(e) The mass 1s nuformly distributed in a right cylinder of elliptical cross section and
infinute length. wath axis along the z axis.

(f) The mass 15 umiformly distributed in a dumbbell whose axis is oriented along the
Z axis.

(g) The mass 1s 1 the form of a uniform wire wound in the geomelry of an infinite
helical solenoid, with axis along the z axis

A particle of mass m slides without friction on a wedge of angle & and mass M that can
move without friction on a smooth honzontal surface, as shown in the figure. Treating
the constraint of the particle on the wedge by the method of Lagrange multipliers,
find the equations of motion for the particle and wedge. Also obtain an expression for
the forces of constraint. Calculate the work done in time ¢ by the forces of constraint
acting on the particle and on the wedge. What are the constants of motion for the
system? Contrast the resvlts you have found with the situation when the wedge 1s
fixed. | Suggestion: For the particle you may either use a Cartesian coordinate system
with y vertical, or one with y normal to the wedge or. even more instructively, do it in
both systems.]
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21.

22

A carriage runs along rails on arigid beam, as shown in the figure below. The carnage
is attached to one end of a spring of equilibrium length ry and force constant k, whose
other end is fixed on the beam. On the carnage, another set of rails 1s perpendicular (o
the first along which a particle of mass m moves, held by a spring fixed on the beam,
of force constant k and zero equilibrium length. Beam, rails, springs, and carriage are
assumed (o have zero mass. The whole system is forced to move in a plane about the
point of attachment of the first spring, with a constant angular speed w. The length of
the second spring is at all tames considered small compared to rg.

(a) What is the energy of the system? Is 1t conserved?
(b) Using generalized coordinates in the laboratory system, what is the Jacobi integral
for the system? Is it conserved?

() Interms of the generahved coordinates relative to a system rotating with the angu-
lar speed . what is the Lagrangian? What is the Jacobi integral? Is it conserved?
Discuss the relationship between the two Jacobi integrals.

Suppose a particle moves in space subject to a conservalive potential V(r) bul 15
constrained to always move on a surface whose equation is o (r, £) = 0. (The explicit
dependence on ¢ indicates that the surface may be moving.} The instantaneous force of
constraint is taken as always perpendicular to the surface. Show analytically that the
energy of the particle is not conserved If the surface moves in time. What physically
is the reason for nonconservation of the energy under this circumstance?

Consider two particles of masses m and m5. Let 1 be confined to move on a circle
of radius ¢ 1n the z = 0 plane, centered at x = y = 0. Let m; be confined (o move
on a circle of radius b in the z = ¢ plane, centered at x = y = 0. A light (massless)
spring of spring constant k 1s attached between the two particles.

(a) Find the Lagrangian for the system.

(b) Solve the problem using Lagrange multipliers and give a physical interpretation
for each mnultiplier.

The one-dimensional harmonic oscillator has the Lagrangian L = mx? /2 — kx/2.
Suppose you did not know the solution to the motion, but realized that the motion
must be periodic and therefore could be described by a Founer senes of the form

x(t) = Za] Cos jwt,
J=0
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25,

26.

(taking ¢ = O at a turning point) where w is the (unknown) angular frequency of the
motion. This representation for x(+) defines a many-parameter path for the system
point in configuration space. Consider the action integral / for two points, #) and 2,
separated by the period T = 25 /. Show that with this form for the system path, { is
an extremum for nonvanishing x only if @, = 0, for j # 1, and only if w? =k/m.

A disk of radms R rolls without slipping inside the stationary parabola y = ax2. Find
the equations of constraint. What condition allows the disk to roll so that it touches
the parabola at one and only one point independent of its position?

A particle of mass m 1s suspended by a massless spring of length L. It hangs, without
inittal monion, in a gravitational field of strength g. It is struck by an impulsive hor-
1zontal blow, which introduces an angular velocity w. If w 1s sufficiently small, it is
obvious that the mass moves as a simple pendulum. If w is sufficiently large, the mass
will rotate about the support. Use a Lagrange multipher to deternmne the conditions
under which the string becomes slack at some point 1n the motion.
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The Central Force Problem

In this chapter we shall discuss the problem of two bodies moving under the in-
fluence of a mutual central force as an application of the Lagrangian formulation.
Not all the problems of central force motion are integrable in terms of well-known
functions. However, we shall attempt to explore the problem as thoroughly as is
possible with the tools already developed. In the last section of this chapter we
consider some of the complications that follow by the presence of a third body.

REDUCTION TO THE EQUIVALENT ONE-BODY PROBLEM

Consider a monogenic system of two mass points, m and ma (cf. Fig. 3.1), where
the only forces are those due to an interaction potential U. We will assume at first
that U is any function of the vector between the two particles, r; — ry, or of their
relative velocity, F2 — Ij, or of any higher derivatives of r, — r;. Such a system
has six degrees of freedom and hence six independent generalized coordinates.
We choose these to be the three components of the radius vector to the center of
mass, R, plus the three components of the difference vector r = r — ry. The
Lagrangian will then have the form

L=TR,F)—U(r.¥F,...). @3.1)

m

FIGURE 3.1 Coordinates for the two-body problem.
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The Kkinetic energy T can be written as the sum of the kinetic energy of the
motion of the center of mass, plus the kinetic energy of motion about the center
of mass, T':

T=4m +m)R+ 7
with
n

1 =12 1 -
T = ML) + smaky.

Here 1| and 1/, are the radii vectors of the two particles relative to the center of
mass and are related to r by

my

r’l =—-——",

my + ma

m
rh=————r 3.2
2 my +m; (

Expressed in terms of r by means of Eq. (3.2), T takes on the form

'_1Mi—2
2my +mp

and the total Lagrangian (3.1) is

o1
L= Maps L MM o Gk ) (3.3)
2 2m) +my

It is seen that the three coordinates R are cyclic, so that the center of mass
is either at rest or moving uniformly. None of the equations of motion for r will
contain terms involving R or R. Consequently, the process of integration is par-
ticularly simple here. We merely drop the first term from the Lagrangian in all
subsequent discussion.

The rest of the Lagrangian is exactly what would be expected if we had a fixed
center of force with a single particle at a distance r from it, having a mass

myma

=0 34
m) 4+ m G4

where u is known as the reduced mass. Frequently, Eq. (3.4) is written in the form

= — 4 —. (3.5)
ho om o ma

Thus, the central force motion of two bodies about their center of mass can always
be reduced to an equivalent one-body problem.
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Chapter 3 The Central Force Problem
THE EQUATIONS OF MOTION AND FIRST INTEGRALS

We now restrict ourselves to conservative central forces, where the potential is
V(r), a function of r only, so that the force is always along r. By the results of
the preceding section, we need only consider the problem of a single particle of
reduced mass m moving about a fixed center of force, which will be taken as the
origin of the coordinate system. Since potential energy involves only the radial
distance, the problem has spherical symmetry; i.e., any rotation, about any fixed
axis, can have no effect on the solution. Hence, an angle coordinate representing
rotation about a fixed axis must be cyclic. These symmetry properties result in a
considerable simplification in the problem.

Since the problem is spherically symmetric, the total angular momentum vec-
tor,

L=rxp,

is conserved. It therefore follows that r is always perpendicular to the fixed direc-
tion of L in space. This can be true only if r always lies in a plane whose normal
is parallel to L. While this reasoning breaks down if L is zero, the motion in that
case must be along a straight line going through the center of force, for L = 0
requires r to be parallel to F, which can be satisfied only in straight-line motion.*
Thus, central force motion is always motion in a plane.

Now, the motion of a single particle in space is described by three coordinates;
in spherical polar coordinates these are the azimuth angle 8, the zenith angle (or
colatitude) v, and the radial distance r. By choosing the polar axis to be in the
direction of L, the motion is always in the plane perpendicular to the polar axis.
The coordinate ¥ then has only the constant value 7 /2 and can be dropped from
the subsequent discussion. The conservation of the angular momentum vector fur-
nishes three independent constants of motion (corresponding to the three Carte-
sian components). In effect, two of these, expressing the constant dtrection of the
angular momentum, have been used to reduce the problem from three to two de-
grees of freedom. The third of these constants, corresponding to the conservation
of the magnitude of L, remains still at our disposal in completing the solution.

Expressed now in plane polar coordinates, the Lagrangian is

L=T-V
= sm(F* +r?6%) — V(). (3.6)

As was forseen, 6 is a cyclic coordinate, whose corresponding canonical momen-
tum is the angular momentum of the system:
aL .
Pop=—= mr26.
ag

*Formally ¥ = in, + réng, hence r x i = 0 requires 6 = 0.
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One of the two equations of motion is then simply

pe = j—t (mr26) =o0. 37
with the immediate integral
mr2f =1. (3.8)
where [ is the constant magnitude of the angular momentum. From (3.7) is also
follows that
a4 (%rzé) —0. (39)

The factor % is inserted because %rzé is just the areal velocity—the area swept

out by the radius vector per unit time. This interpretation follows from Fig. 3.2,
the differential area swept out in time dt being

dA = ir(r do),

and hence
dA 1 ,d6
— = 7=,
dt 2 dt
The conservation of angular momentum is thus equivalent to saying the areal
velocity is constant. Here we have the proof of the well-known Kepler’s second
law of planetary motion: The radius vector sweeps out equal areas in equal times.

It should be emphasized however that the conservation of the areal velocity is a
general property of central force motion and is not restricted to an inverse-square

law of force.
rd@ '

de

FIGURE 3.2 The area swept out by the radius vector m a time d:.
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Chapter 3 The Central Force Problem

The remaining Lagrange equation, for the coordinate r, is

”

d b, BV
E(mr) — mré* + = 0. (3.10)

Designating the value of the force along r, —3V /dr, by f(r) the equation can be
rewritten as

m¥ — mré? = f(r). (3.11)

By making use of the first integral, Eq. (3.8), 6 can be eliminated from the equa-
tion of motion, yielding a second-order differential equation involving r only:

12
mi — — = ). (3.12)
mr-

There is another first integral of motion available, namely the total energy,

since the forces are conservative. On the basis of the general energy conservation
theorem, we can imm