Mecânica Quântica (física quântica)

 

Ebooks de Física Quântica

 

 

PDF
 

 

Notas de Aulas de Física Moderna do Prof. Carlos R. A. Lima
01. Teoria da Relatividade Especial
02. Radiação Térmica e Corpo Negro
03. Propriedades Corpusculares da Radiação
04. Modelos Atômicos
05. Propiredades Ondulatórias da Matéria
06. Mecânica Quântica de Schrödinger
07. Soluções da Equação de Schrödinger

 

O estilo científico de Einstein na exploração do domínio quântico (uma visão da relação entre a teoria e seu objeto) - Michel Paty

As primeiras pesquisas físicas de Einstein (principalmente aquelas do ano de ouro de 1905) concentraram- se em dois domínios que ele tratava independentemente: o domínio atômico e radioativo, de um lado, e a teoria eletromagnética, de outro. Posteriormente essas duas direções de pesquisa cristalizaramse na direção da teoria quântica para a primeira, e das teorias da relatividade e do campo contínuo para a segunda. Pode-se discernir desde o início, ao seguir o trabalho de Einstein nessas duas direções (que ele conduzirá constantemente em paralelo), dois tipos de aproximações diferentes: uma, heurística, que põe em obra um método probabilista de investigação suscitado pela termodinâmica (cálculos de flutuações), tendo em vista caracterizar as propriedades específicas do novo domínio da física quântica; a outra, imediatamente fundamental, que organiza o trabalho teórico em torno de princípios físicos, em particular, de invariância. Esses dois modos de abordagem não correspondem a uma oposição entre duas atitudes de pensamento, empirista de um lado e teórico-racional do outro (como muitos comentadores quiseram crer, reportando-os a dois períodos distintos da obra de Einstein), mas a uma maneira diferenciada que lhe é própria de conceber o trabalho teórico, em função da inteligibilidade possível de seu objeto, em termos de conceitos e de princípios sempre pensados fisicamente. Essa maneira define o estilo próprio de Einstein enquanto pesquisador em física, ao mesmo tempo crítico e construtivo, que se constitui desde seus primeiros trabalhos.

 

 


 

Thaller - Visual Quantum Mechanics

Peres - Quantum Theory Concepts and Methods

Griffiths - Introduction to quantum mechanics

Basdevant - Lectures on Quantum Mechanics

Sakurai - Modern Quantum Mechanics

Shankar - Principles of quantum mechanics

Schaum's Outline of Quantum Mechanics

Phillips - Introduction to Quantum Mechanics

»QUANTUM MECHANICS, by Professor John W. Norbury
WAVE FUNCTION , Probability Theory , Mean, Average, Expectation Value , Average of a Function , Mean, Median, Mode , Standard Deviation and Uncertainty , Probability Density , Postulates of Quantum Mechanics , Conservation of Probability (Continuity Equation) , Conservation of Charge , Conservation of Probability , Interpretation of the Wave Function , Expectation Value in Quantum Mechanics , Operators , Commutation Relations , DIFFERENTIAL EQUATIONS , Ordinary Differential Equations , Second Order, Homogeneous, Linear, Ordinary Differential, Equations with Constant Coe±cients , Inhomogeneous Equation , Partial DiFFerential Equations , Properties of Separable Solutions , General Solutions , Stationary States , Definite Total Energy , Alternating Parity , Nodes , Complete Orthonormal Sets of Functions , Time-dependent Coecients , INFINITE -DIMENSIONAL BOX , Energy Levels , Wave Function , POSTULATES OF QUANTUM MECHANICS , Mathematical Preliminaries , Hermitian Operators , Eigenvalue Equations , Postulate , Expansion Postulate , Measurement Postulate , Reduction Postulate , Summary of Postulates of Quantum Mechanics (Simple Version) , DIMENSIONAL PROBLEMS , Bound States , Boundary Conditions , Finite -dimensional Well , Regions I and III With Real Wave Number , Region II , Matching Boundary Conditions , Energy Levels , Strong and Weak Potentials , Power Series Solution of ODEs , Use of Recurrence Relation , Harmonic Oscillator , Algebraic Solution for Harmonic Oscillator , Further Algebraic Results for Harmonic Oscillator , SCATTERING STATES , Free Particle , Group Velocity and Phase Velocity , Transmission and Reflection , Alternative Approach , Step Potential , Finite Potential Barrier , Quantum Description of a Colliding Particle , Expansion Coeficients , Time Dependence , Moving Particle , Wave Packet Uncertainty , FEW-BODY BOUND STATE PROBLEM , Body Problem , Classical -Body Problem , Quantum -Body Problem , Body Problem , DIMENSIONAL PROBLEMS , DIMENSIONAL SCHRÖINGER EQUATION , Angular Equations , Radial Equation , Bessel's Differential Equation , Hankel Functions , HYDROGEN-LIKE ATOMS , Laguerre Associated Differential Equation , Degeneracy , ANGULAR MOMENTUM , Orbital Angular Momentum , Uncertainty Principle , Zeeman Effect , Algebraic Method , Spin , Spin-Orbit Coupling , Addition of Angular Momentum , Wave Functions for Singlet and Triplet Spin States , Clebsch-Gordon Coe±cients , Total Angular Momentum , LS and jj Coupling , SHELL MODELS , Atomic Shell Model , Degenerate Shell Model , Non-Degenerate Shell Model , Non-Degenerate Model with Surface Effects , Spectra , Hartree-Fock Self Consistent Field Method , Nuclear Shell Model , Nuclear Spin , Quark Shell Model , DIRAC NOTATION , Finite Vector Spaces , Real Vector Space , Complex Vector Space , Matrix Representation of Vectors , One-Forms , In¯nite Vector Spaces , Operators and Matrices , Matrix Elements , Hermitian Conjugate , Hermitian Operators , Expectation Values and Transition Amplitudes , Postulates of Quantum Mechanics (Fancy Version) , Uncertainty Principle , TIME-INDEPENDENT PERTURBATION THEORY, HYDROGEN, ATOM, POSITRONIUM, STRUCTURE OF HADRONS, Non-degenerate Perturbation Theory , Degenerate Perturbation Theory , Two-fold Degeneracy , Another Approach , Higher Order Degeneracies , Fine Structure of Hydrogen , Body Relativistic Correction , Two-Body Relativistic Correction , Spin-Orbit Coupling , Zeeman effect , Stark effect , Hyper ne splitting , Lamb shift , Positronium and Muonium , Quark Model of Hadrons , VARIATIONAL PRINCIPLE, HELIUM ATOM, MOLECULES, Variational Principle , Helium Atom , Molecules , WKB APPROXIMATION, NUCLEAR ALPHA DECAY , Generalized Wave Functions , Finite Potential Barrier , Gamow's Theory of Alpha Decay , TIME-DEPENDENT PERTURBATION THEORY, LASERS, Equivalent Schrödinger Equation , Dyson Equation , Constant Perturbation , Harmonic Perturbation , Photon Absorption , Radiation Bath , Photon Emission , Selection Rules , Lasers , SCATTERING, NUCLEAR REACTIONS , Cross Section , Scattering Amplitude , Calculation of cl , Phase Shift , Integral Scattering Theory , Lippman-Schwinger Equation , Scattering Amplitude , Born Approximation , Nuclear Reactions , SOLIDS AND QUANTUM STATISTICS , Solids , Quantum Statistics , SUPERCONDUCTIVITY , ELEMENTARY PARTICLES

»A Direct Photoelectric Determination of Planck's 'h.', R. A. Millikan Physical Review VII, 355-388 (1916) [Issue 3 -- March 1916] 
QUANTUM theory was not originally developed ‘for the sake of interpreting photoelectric phenomena. It was solely a theory as to the mechanism of absorption and emission of electromagnetic waves by resonators of atomic or subatomic dimensions. It had nothing whatever to say about the energy of an escaping electron or about the conditions under which such an electron could make its escape, and up to this day the form of the theory developed by its author has not been able to account satisfactorily for the photoelectric facts presented herewith. We are confronted, however, by the astonishing-situation that these facts were correctly and exactly predicted nine years ago by a form of quantum theory which has now been pretty generally abandoned.



»Visual Quantum Mechanics, by Bernd Thaller
Selected Topics with Computer-Generated Animations of
Quantum-Mechanics Phenomena


»Description of an Atom: A Phenomenographic Analysis
This study investigates the students’ ideas about an atom by asking them to describe an atom on a paper and pencil questionnaire. Students’ understanding of the structure of an atom, its constituents and their approximate locations, the size of an atom, and energy released by an atom are investigated. Analysis of responses was based on the phenomenographic method. The study does not attempt to develop a catalog of students' "misconceptions" of atoms. It explores how students describe atoms when they are presented with an open-ended question. We can then learn what ideas are foremost in students' thoughts when they think of atoms.

»Quantum Harmonic Oscillator Lecture

»Quantum physics: A Text for Graduate Students, by Roger G. Newton
The combination of quantum mechanics and quantum field
theory constitutes the most revolucionary and inflkuential physical theory of century ...
Qunatum Basics: Statics, Dynamics,The Schrödinger Equation in One Dimension, One- and Two-Particle Systems in Three Dimensions,Symmetries, Stationary Approximation Methods, Static Magnetic Fields, Multiparticle Systems, Relativistic Electron Theory, The Dirac Equation for a Central Potential, etc.

»Quantum Mechanics Concepts and Applications, by Tarun Biswas
Mathematical Preliminaries , The state vectors , The inner product , Linear operators , Eigenstates and eigenvalues , The Dirac delta function , The Laws (Postulates) of Quantum Mechanics , A lesson fromclassical mechanics , The postulates of quantum mechanics , Some history of the postulates , Popular Representations , The position representation , Themomentumrepresentation , Some Simple Examples , The Hamiltonian, conserved quantities and expectation value , Free particle in one dimension , Momentum , Energy , Position , The harmonic oscillator , Solution in position representation , A representation free solution , Landau levels , More One Dimensional Examples , General characteristics of solutions , Bound states , Scattering states , Some oversimplied examples , Rectangular potential well (bound states) , Rectangular potential barrier (scattering states) , Numerical Techniques in One Space Dimension , Finite differences , One dimensional scattering , One dimensional bound state problems , Other techniques , Accuracy , Speed , Symmetries and Conserved Quantities , Symmetry groups and their representation , Space translation symmetry , Time translation symmetry , Rotation symmetry , Eigenvalues of angularmomentum , Addition of angularmomenta , Discrete symmetries , Space inversion , Time reversal , Three Dimensional Systems , General characteristics of bound states , Spherically symmetric potentials , Angularmomentum , The two body problem , The hydrogen atom(bound states) , Scattering in three dimensions , Center ofmass frame vs laboratory frame , Relation between asymptotic wavefunction and cross section , Scattering due to a spherically symmetric potential , Numerical Techniques in Three Space Dimensions , Bound states (spherically symmetric potentials) , Bound states (general potential) , Scattering states (spherically symmetric potentials) , Scattering states (general potential) , Approximation Methods (Bound States) , Perturbation method (nondegenerate states) , Degenerate state perturbation analysis , Time dependent perturbation analysis , The variational method , Approximation Methods (Scattering States) , The Green's function method , The scatteringmatrix , The stationary case , The Born approximation , Spin and Atomic Spectra , Degenerate position eigenstates , Spin-half particles , Spin magneticmoment (Stern-Gerlach experiment) , Spin-orbit coupling , Zeeman effect revisited , Relativistic Quantum Mechanics , The Klein-Gordon equation , The Dirac equation , Spin and the Dirac particle , Spin-orbit coupling in the Dirac hamiltonian , The Dirac hydrogen atom , The Dirac particle in a magnetic field , A `C' Programs for Assorted Problems , A Program for the solution of energy eigenvalues for the rectangular potential well , A General Program for one dimensional scattering o arbitrary barrier , A Function for rectangular barrier potential , A General energy eigenvalue search program , A Function for the harmonic oscillator potential , A Function for the hydrogen atompotential , B Uncertainties and wavepackets

Problemas resolvidos do Sakurai