Lecture #31:
Experimental Tests of General Relativity
- Friday: Quiz 6, 15 minutes at beginning of class

Material: → BDSV Ch. 22, S2, S3 (focus on lecture WUN2K)
 → Homeworks 11, 12
 → Astronomy Place tutorials for above
 (Dark Matter in Galaxies, Black Holes)

- Partial solar eclipse on Friday, about 5:45 pm!
 I will arrange a viewing (if weather permits)
OUTLINE
BDSV Chapter S3, 18.4

- Experimental Tests of General Relativity
 - precession of Mercury
 - bending of light; gravitational lensing
 - gravitational time shift and redshift
 - gravitational waves

- More on Black Holes

- Some Speculations
 - wormholes and warp drives
Which of the following best describes the relation between Newton's theory of gravity and general relativity?

a. General relativity applies at the subatomic level, but Newton's does not.

b. Newton's theory and general relativity give the same answers, but the former tells us to think of gravity as a force, and the latter tells us to think of it as curvature of spacetime.

c. Newton's theory of gravity is an approximation to general relativity that works when gravity is relatively weak, but breaks down when gravity is strong.

d. Newton's theory is now known to be false, and we were previously misled by measurement errors.
Which of the following best describes the relation between Newton's theory of gravity and general relativity?

a. General relativity applies at the subatomic level, but Newton's does not.
b. Newton's theory and general relativity give the same answers, but the former tells us to think of gravity as a force, and the latter tells us think of it as curvature of spacetime.
c. Newton's theory of gravity is an approximation to general relativity that works when gravity is relatively weak, but breaks down when gravity is strong.
d. Newton's theory is now know to be false, and we were previously misled by measurement errors.
Review PRS Question

According to general relativity, why does the Earth orbit the Sun?

a. Earth is following the straightest path possible through spacetime, but this path happens to go around the Sun.

b. Because a mysterious force that we call gravity holds the Earth in orbit.

c. Because the Earth and Sun are connected by a 'rope-like' set of invisible, subatomic particles.

d. Earth orbits the Sun because a spacetime diagram shows the Sun to be a bowl-shaped dip in a rubber sheet.
Review PRS Question

According to general relativity, why does the Earth orbit the Sun?

a. Earth is following the straightest path possible through spacetime, but this path happens to go around the Sun.

b. Because a mysterious force that we call gravity holds the Earth in orbit.

c. Because the Earth and Sun are connected by a 'rope-like' set of invisible, subatomic particles.

d. Earth orbits the Sun because a spacetime diagram shows the Sun to be a bowl-shaped dip in a rubber sheet.
Basic Ideas of General Relativity

An object floating freely has a worldline that follows the straightest possible path through spacetime. If you feel weight, then you are not on the straightest possible path.

What we feel as gravity arises from the curvature of spacetime. Mass causes spacetime to curve, and the curvature determines the paths of freely moving masses.

'Matter tells space how to curve; space tells matter how to move'
Spacetime and gravity movie

www.pbs.org/wgbh/nova/einstein/relativity/animations.html
Caveats for rubber sheet analogy

- masses are really *part of* the universe, not on top of it

- we can only see orbits in 2D; for instance orbits at the same radius can be in different planes

- time part of spacetime not shown... for instance Earth never returns to the same point in spacetime

Nevertheless, it's extremely helpful for visualization
What evidence do we have that these ideas are valid?
Precession of Mercury's orbit

Newton's theory predicts that Mercury's orbit will precess, due to the influence of the other planets (one cycle per 20,000 yr)

Einstein's theory predicts a small discrepancy, because space is more curved near the Sun time runs slower at perihelion:
this is measured (observed before Einstein!)
Suppose Mercury's orbit were more elliptical than it is... the discrepancy with Newtonian gravity would be

a. greater
b. smaller
c. the same
d. impossible to tell
Suppose Mercury's orbit were more elliptical than it is... the discrepancy with Newtonian gravity would be

a. greater
b. smaller
c. the same
d. impossible to tell

Greater difference in perihelion and aphelion means greater difference in clock rate from gravitational time dilation
Another prediction of GR: gravity *bends light*

Light always travels along the straightest possible path in spacetime.
When the light passes through the curved spacetime from a strong gravitational field, it follows a curved path.

The apparent position of an object may shift due to the curved path of light.

This is observed! First observation of this effect: Eddington observed the Hyades near the Sun during the eclipse of 1919.
Multiple images of the same star are possible

Gravitational lensing (strong lensing)

Einstein cross

Einstein ring
Another test: check gravitational time dilation with precise clocks

Measurements with clocks on spacecraft: do clocks slow as the gravitational field increases, as predicted by GR?

So far, no deviations from predictions found

Primary Atomic Reference Clock in Space for International Space Station

Gravity Probe A, 1976
Can use *spectral lines* as clocks: they correspond to specific frequencies of light.

GRAVITATIONAL REDSHIFT: time runs slow near a strong gravitational field, so lines emitted near large objects will be redshifted (not same as Doppler shift).

This is observed, and results agree with GR predictions.
Gravitational Waves

Ripples in spacetime caused by a disturbance

The waves carry energy; they compress and expand objects as they pass
Gravitational Wave animations

rotating asymmetric object

rapidly rotating pulsar

black hole merger from galaxy collision
Gravitational waves have so far been observed only INDIRECTLY

Hulse-Taylor binary pulsar, 1974

Energy lost to gravitational waves causes the orbits to decay... observed!
Ongoing search to observe gravitational waves \textit{directly}.

LASER INTERFEROMETER

Passing wave causes tiny displacements of masses \simkm apart, as spacetime is stretched and squashed...

this is detected by laser beam interference
LIGO: Laser Interferometer Gravitational Wave Observatory
currently searching for gravitational waves
(requires tremendously good noise reduction)

Hanford, Washington Livingston, Louisiana

Several similar projects around the world are also searching... none yet found, but prospects are good
Possible future project: LISA

laser interferometer in space
Let's revisit black holes in the context of general relativity...

We saw black holes as compressed stars: collapse as neutron degeneracy pressure can no longer counteract gravity

Escape velocity

\[v_e = \sqrt{\frac{2GM}{r}} \]

If \(r \) is really small, \(v_e \) gets really big

Inside the **EVENT HORIZON** nothing can ever get out, not even light!

Schwarzschild radius

\[R_s = \frac{2GM}{c^2} \]
In our rubber sheet analogy, a black hole really is a 'hole in the universe'

When objects compress, the curvature increases nearby them

(no change outside)
Meaning of the event horizon in this picture:

Light always takes the straightest possible path: inside the event horizon, the path is curved such that light can never exit.

Schwarzschild radius:
radius the event horizon would have if spacetime were flat
Suppose you drop a clock toward a black hole. As you look at the clock from a high orbit, what will you notice?

a. The clock will fall faster and faster, reaching the speed of light as it crosses the event horizon.

b. The clock will fall toward the black hole at a steady rate, so that you'll see it plunge through the event horizon within minutes.

c. Time on the clock will run faster as it approaches the black hole, and light from the clock will be increasingly blueshifted.

d. Time on the clock will run slower as it approaches the black hole, and light from the clock will be increasingly redshifted.
Suppose you drop a clock toward a black hole. As you look at the clock from a high orbit, what will you notice?

a. The clock will fall faster and faster, reaching the speed of light as it crosses the event horizon.
b. The clock will fall toward the black hole at a steady rate, so that you'll see it plunge through the event horizon within minutes.
c. Time on the clock will run faster as it approaches the black hole, and light from the clock will be increasingly blueshifted.
d. Time on the clock will run slower as it approaches the black hole, and light from the clock will be increasingly redshifted.
Due to gravitational redshift/time dilation, time **runs slower the closer you get** to a black hole.

If your friend Jackie dives towards the black hole, you will see her clock come to a stop... it takes an infinite time for her to cross from your point of view! (she sees your time running fast!)
But in fact, Jackie may get squished before she crosses, due to the gravitational force pulling her feet harder than her head!
What's inside the black hole?

An infinitely dense point? A SINGULARITY

We do not know what happens there: information cannot get out!

- GR predicts infinite curvature
- Quantum physics predicts fluctuations

Is information really lost from the universe?

Stephen Hawking thought yes... now has changed his mind...
Some speculations:

Take a short cut through spacetime with a WORMHOLE??

3D analogy: it takes less time to travel through the Earth than across the 2D surface if you tunnel through.
What if you could tunnel through hyperspace?
You could travel at a speed effectively greater than c

This would work if space is conveniently curved...
Or, might we curve space ourselves with WARP DRIVE?

We have no evidence this would work... but it's also apparently not strictly prohibited

But this allows travel in time, too

Problem: violate causality? Well explored in science fiction...
WUN2K
General relativity has so far passed all experimental tests

Precession of Mercury

Gravitational time dilation and redshift

Bending of light; gravitational lensing
GR is still under test! (Does it break down somewhere?)

Gravitational Waves:
ripples in spacetime caused by a disturbance

GW observed *indirectly*
from orbital decay of binary pulsars

Current attempts
to observe GW *directly*
using giant laser interferometers
Black holes revisited

Region of infinite curvature? (singularity)

Time slows to a stop at the event horizon; objects squeezed by tidal forces
Speculative ideas
(not known if they work, but not strictly forbidden)

Wormhole: shortcut through hyperspace; travel at speeds effectively $>c$

Warp drive: curving spacetime at will?
Minute Questionnaire

Please take a minute to fill it out.

I will answer try to answer all (well-posed) questions on the web as soon as I can

Please use this to give me feedback