
FÍSICA

01. A tabela registra dados do deslocamento x em função do tempo t, referentes ao movimento retilíneo uniforme de um móvel. Qual é a velocidade desse móvel?

t(s)	x (m)	
0	0	
2	6	
5	15	
9	27	

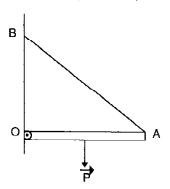
- (A) 1/9 m/s
- (B) 1/3 m/s
- (C) 3 m/s
- (D) 9 m/s
- (E) 27 m/s
- O2. O gráfico representa a variação do módulo da velocidade v de um corpo, em função do tempo.

A seqüência de letras que aparece no gráfico corresponde a uma sucessão de intervalos iguais de tempo. A maior desaceleração ocorre no intervalo delimitado pelas letras

- (A) Q e R.
- (B) R e T.
- (C) T e V.
- (D) V e X.
- (E) X e Z.
- 03. Uma pedra foi deixada cair do alto de uma torre e atingiu o chão com uma velocidade de 27 m/s. Supondo que, do início ao fim do movimento, o módulo da aceleração da pedra foi constante e igual a 9 m/s², qual é a altura da torre?
 - (A) 3,0 m
 - (B) 13,5 m
 - C) 27,0 m
 - (D) 40,5 m
 - (E) 81,0 m

04. Uma massa M executa um movimento harmônico simples entre as posições x = -A e x = A, conforme representa a figura. Qual das alternativas refere-se corretamente aos módulos e aos sentidos das grandezas velocidade e aceleração da massa M na posição x = -A?

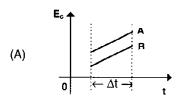
esquerda $\xrightarrow{\hspace*{1cm} \downarrow \hspace*{1cm}}$ $\xrightarrow{\hspace*{1cm} \downarrow \hspace*{1cm}}$ direita

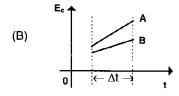

- (A) A velocidade é nula; a aceleração é nula.
- (B) A velocidade é máxima e aponta para a direita; a aceleração é nula.
- (C) A velocidade é nula; a aceleração é máxima e aponta para a direita.
- (D) A velocidade é nula; a aceleração é máxima e aponta para a esquerda.
- (E) A velocidade é máxima e aponta para a esquerda; a aceleração é máxima e aponta para a direita.
- **05.** Joãozinho é um menino sem conhecimento científico, mas sabe lançar uma pedra amarrada a um barbante como ninguém. Ele ergue o braço, segura a extremidade livre do barbante em sua mão e aplica-lhe sucessivos impulsos. Assim ele faz a pedra girar em uma trajetória horizontal sobre a sua cabeça, até que, finalmente, a arremessa com precisão na direção desejada.

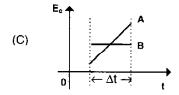
O que Joãozinho gostaria de explicar (mas não sabe) é a razão pela qual as duas extremidades do barbante esticado nunca chegam a ficar exatamente no mesmo plano horizontal. Por mais rápido que ele faça a pedra girar, a extremidade presa à pedra fica sempre abaixo da outra extremidade.

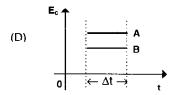
Para resolver esta questão, é necessário identificar, dentre as forças exercidas sobre a pedra, aquela que impede que a extremidade presa à pedra se eleve ao mesmo nível da outra extremidade. Qual é essa força?

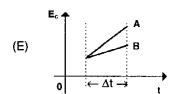
- (A) A força centrípeta.
- (B) A força de empuxo estático.
- (C) A força tangencial à trajetória.
- (D) A força de tensão no barbante.
- (E) A força peso.

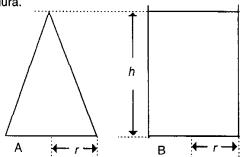

06. A figura representa uma barra homogênea OA, rígida e horizontal, de peso P. A barra é mantida em equilíbrio, sustentada numa extremidade pela articulação O e, na outra extremidade, por um cabo AB, preso a uma parede no ponto B.

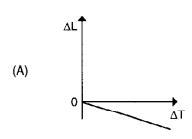


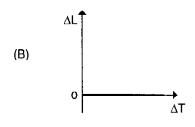

No ponto O, a força exercida pela articulação sobre a barra tem uma componente vertical que é

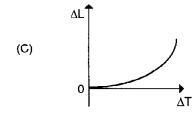

- (A) diferente de zero e dirigida para cima.
- (B) diferente de zero e dirigida para baixo.
- (C) diferente de zero e de sentido indefinido.
- (D) igual a zero.
- (E) igual, em módulo, ao peso P da barra.
- 07. Um planeta imaginário, Terra Mirim, tem a metade da massa da Terra e move-se em torno do Sol em uma órbita igual à da Terra. A intensidade da força gravitacional entre o Sol e Terra Mirim é, em comparação à intensidade dessa força entre o Sol e a Terra,
 - (A) o quádruplo.
 - (B) o dobro.
 - (C) a metade.
 - (D) um quarto.
 - (E) a mesma.
- 08. O watt-hora é uma unidade de
 - (A) trabalho.
 - (B) potência.
 - (C) força.
 - (D) potência por unidade de tempo.
 - (E) força por unidade de tempo.

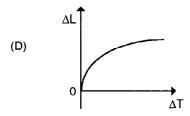

09. Dois objetos A e B deslocam-se em movimento retilíneo uniforme, sendo a velocidade de A maior do que a de B. Qual dos gráficos da energia cinética (E_c) contra o tempo (t) representa corretamente essa situação?

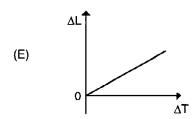


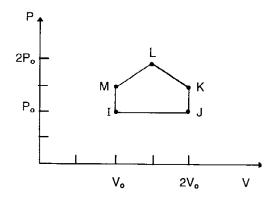

- Uma variação na quantidade de movimento de um corpo, entre dois instantes, está necessariamente associada à presença de
 - (A) uma aceleração.
 - (B) um trabalho mecânico.
 - (C) uma trajetória circular.
 - (D) uma colisão.
 - (E) uma explosão.


- 11. Três cubos A, B e C, maciços e homogêneos, têm o mesmo volume de 1 cm³. As massas desses cubos são, respectivamente, 5 g, 2 g e 0,5 g. Em qual das alternativas os cubos aparecem em ordem crescente de massa específica?
 - (A) A, B e C
 - (B) C, B e A
 - (C) A, C e B
 - (D) C, A e B
 - (E) B, A e C
- 12. Dois recipientes A e B têm bases circulares com mesmo raio r. sendo A um cone reto e B um cilindro reto. Ambos contêm água e estão cheios até a mesma altura h, conforme representa a figura.

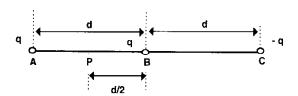



- Selecione a alternativa que preenche corretamente as lacunas do texto abaixo.
- O peso da água contida em A épeso da água contida em B, e a pressão exercida pela água sobre a base de A épressão exercida pela água sobre a base de B.
- (A) o dobro do a metade da
- (B) um terço do igual à
- (C) a metade do a metade da
- (D) um terço do o dobro da
- (E) igual ao igual à
- 13. A mesma quantidade de energia que é necessária para derreter 200 g de gelo a 0° C é transferida a um corpo de outro material, com massa de 2 kg, fazendo sua temperatura aumentar 40° C. Sabendo-se que o calor latente de fusão do gelo é L = 334 kJ/kg, pode-se afirmar que o calor específico do material do segundo corpo é
 - (A) 0,835 J/(kg K)
 - (B) 1,670 J/(kg K)
 - (C) 0,835 kJ/(kg K)
 - (D) 1,670 kJ/(kg K)
 - (E) 835,0 kJ/(kg K)


14. Uma barra retilínea e uniforme, feita de um material cujo coeficiente de dilatação linear é positivo e independente da temperatura, recebe calor de uma fonte térmica. Entre os gráficos abaixo, qual o que melhor representa a variação ΔL do comprimento da barra como função da variação ΔT de sua temperatura?



15. Um sistema constituído por uma amostra de gás ideal realiza o ciclo termodinâmico representado no diagrama P-V da figura abaixo, sendo o ciclo percorrido no sentido anti-horário.

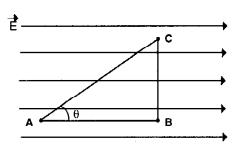

Considere as afirmações abaixo, referentes ao ciclo termodinâmico representado:

- I Entre os pontos I e J, o sistema realiza um trabalho igual a $P_0 \ V_o$.
- II Entre os pontos J e K, não há transferência de energia ao sistema.
- III Entre os pontos I e L, não há variação na energia interna do sistema.

Quais delas estão corretas?

- (A) Apenas I
- (B) Apenas I e II
- (C) Apenas I e III
- (D) Apenas II e III
- (E) I, II e III
- 16. Enquanto se expande, um gás recebe o calor Q = 100 J e realiza o trabalho W = 70 J. Ao final do processo, podemos afirmar que a energia interna do gás
 - (A) aumentou 170 J.
 - (B) aumentou 100 J.
 - (C) aumentou 30 J.
 - (D) diminuiu 70 J.
 - (E) diminuiu 30 J.
- 17. Um gás ideal sofre uma compressão adiabática durante a qual sua temperatura absoluta passa de T para 4 T. Sendo P a pressão inicial, podemos afirmar que a pressão final será
 - (A) menor do que P.
 - (B) igual a P.
 - (C) igual a 2 P.
 - (D) iğual a 4 P.
 - (E) maior do que 4 P.

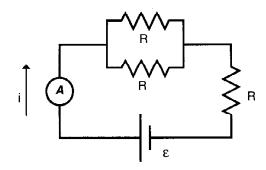
18. Duas partículas, cada uma com carga elétrica positiva q, estão colocadas nas posições A e B, conforme indica a figura abaixo. Outra partícula, com carga elétrica negativa -q, ocupa a posição C. A força elétrica exercida sobre a carga em B, devido às cargas em A e C, tem módulo 2 F.

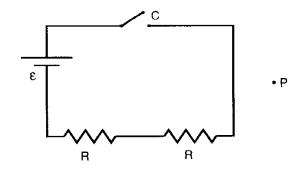

Se a carga que está em A for colocada na posição P, a força elétrica exercida sobre a carga em B terá módulo

- (A) 1 F
- (B) 2 F
- (C)3F
- (D) 4 F
- (E) 5 F
- 19. Duas grandes placas planas carregadas eletricamente, colocadas uma acima da outra paralelamente ao solo, produzem entre si um campo elétrico que pode ser considerado uniforme. O campo está orientado verticalmente e aponta para baixo.

Selecione a alternativa que preenche corretamente as lacunas do texto abaixo.

- (A) se encurva para cima aumenta
- (B) se encurva para cima diminui
- (C) se mantém retilínea aumenta
- (D) se encurva para baixo aumenta
- (E) se encurva para baixo diminui


20. Uma carga elétrica puntiforme positiva é deslocada ao longo dos três segmentos indicados na figura abaixo, AB, BC e CA, em uma região onde existe um campo elétrico uniforme, cujas linhas de força estão também representadas na figura.


Assinale a alternativa correta.

- (A) De A até B a força elétrica realiza sobre a carga um trabalho negativo.
- (B) De A até B a força elétrica realiza sobre a carga um trabalho nulo.
- (C) De A até B a força elétrica realiza sobre a carga um trabalho de módulo igual a |W_{CA}| cos θ, onde |W_{CA}| é o módulo do trabalho realizado por esta força entre C e A.
- (D) De B até C a força elétrica realiza sobre a carga um trabalho nulo.
- (E) De B até C a força elétrica realiza sobre a carga um trabalho igual àquele realizado entre A e B.
- 21. O rótulo de uma lâmpada contém a seguinte inscrição: "120 V, 60 W". Quando submetida à tensão indicada de 120 V, a resistência elétrica dessa lâmpada é
 - (A) 2Ω
 - (B) 60 Ω
 - (C) 120 Ω
 - (D) 240 Ω
 - (E) 7200 Ω

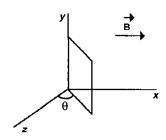
22. No circuito da figura abaixo, o amperímetro A registra uma corrente i = 0,2 A. Cada um dos três resistores representados na figura tem resistência R = 40 Ω. Qual é a potência dissipada pelo par de resistores associados em paralelo?

- (A) 0,8 W
- (B) 1,6 W
- (C) 3,2 W
- (D) 8,0 W
- (E) 16,0 W
- 23. Quando a chave C está fechada, o circuito da figura abaixo é percorrido por uma corrente elétrica, observando-se no ponto P um campo magnético de módulo B. (Considere que o campo magnético terrestre pode ser desprezado.)

Se os dois resistores do circuito forem substituídos por dois outros, cada um com resistência R/2, o módulo do campo magnético observado no ponto P será

- (A) B/4
- (B) B/2
- (C) B
- (D) 2 B
- (E) 4 B

24. Em certa localidade, a componente horizontal do campo magnético terrestre tem módulo B_H.


Uma agulha de bússola, que só pode se mover no plano horizontal, encontra-se alinhada com essa componente. Submetendo a bússola à ação de um campo magnético adicional, dirigido horizontalmente na direção perpendicular a \overrightarrow{B}_H , a agulha assume nova posição de equilíbrio, ficando orientada a 45° em relação à direção original.

Pode-se concluir que o módulo do campo adicional é

- (A) $B_{H} / \sqrt{2}$
- (B) B_H / 2
- (C) B_H
- (D) $\sqrt{2}$ B_H
- (E) 2 B_H

Instrução: O enunciado e a figura abaixo referem-se às questões de números **25** e **26**.

A figura representa uma espira condutora retangular num campo magnético uniforme \overline{B} que tem a direção do eixo x. A espira pode girar em torno do eixo y. Designamos por θ o ângulo de giro formado pelo plano da espira com o eixo z.

- **25.** Selecione a alternativa que preenche corretamente as lacunas do texto abaixo.

 - (A) zero 45°
 - (B) zero 90°
 - (C) zero 180°
 - (D) 90° zero
 - (E) 90° 180°

- 26. A cada ciclo completo descrito pela espira em torno do eixo y, a partir da posição em que ela se encontra na figura, o sentido da corrente elétrica induzida na espira se inverte
 - (A) uma vez.
 - (B) duas vezes.
 - (C) três vezes.
 - (D) quatro vezes.
 - (E) cinco vezes.
- 27. As cores azul, verde e vermelho estão na ordem crescente de seus comprimentos de onda. São cores monocromáticas, produzidas por três diferentes lasers. Qual das alternativas coloca essas cores em ordem crescente de suas freqüências?
 - (A) azul, verde, vermelho
 - (B) azul, vermelho, verde
 - (C) vermelho, verde, azul
 - (D) vermelho, azul, verde
 - (E) verde, azul, vermelho
- 28. A tabela apresenta os valores do índice de refração do vidro flint, em relação ao ar, para diversas cores da luz visível.

Violeta	Azul	Verde	Amarelo	Vermelho
1,607	1,594	1,581	1,575	1,569

Um feixe de luz branca, proveniente do ar, atinge obliquamente uma lâmina desse vidro, com um ângulo de incidência bem determinado. O feixe sofre dispersão ao ser refratado nessa lâmina, separando-se nas diversas cores que o compõem. Qual das alternativas estabelece uma relação correta para os correspondentes ângulos de refração das cores vermelho, verde e azul, respectivamente?

- (A) $\theta_{\text{vermelho}} > \theta_{\text{verde}} > \theta_{\text{azul}}$
- (B) $\theta_{\text{vermelho}} > \theta_{\text{verde}} = \theta_{\text{azul}}$
- (C) $\theta_{\text{vermelho}} = \theta_{\text{verde}} < \theta_{\text{azul}}$
- (D) $\theta_{\text{vermelho}} < \theta_{\text{verde}} < \theta_{\text{azul}}$
- (E) $\theta_{\text{vermelho}} < \theta_{\text{verde}} > \theta_{\text{azul}}$
- 29. A imagem de um objeto real, formada por um espelho convexo, é sempre
 - (A) real, invertida e maior do que o objeto.
 - (B) real, direita e menor do que o objeto.
 - (C) real, direita e maior do que o obieto.
 - (D) virtual, invertida e maior do que o objeto.
 - (E) virtual, direita e menor do que o objeto.

- 30. Um objeto real está situado a 12 cm de uma lente. Sua imagem, formada pela lente, é real e tem uma altura igual à metade da altura do objeto. Tendo em vista essas condições, considere as afirmações abaixo.
 - 1 A lente é convergente.
 - II A distância focal da lente é 6 cm.
 - III A distância da imagem à lente é 12 cm.

Quais delas estão corretas?

- (A) Apenas 1
- (B) Apenas I e II
- (C) Apenas I e III
- (D) Apenas II e III
- (E) I, II e III
- 31. Quando você anda em um velho ônibus urbano, é fácil perceber que, dependendo da fregüência de giro do motor, diferentes componentes do ônibus entram em vibração. O fenômeno físico que está se produzindo neste caso é conhecido como
 - (A) eco.
 - (B) dispersão.
 - (C) refração.
 - (D) ressonância.
 - (E) polarização.
- 32. Em uma onda sonora estacionária, no ar a separação entre um nodo e o ventre mais próximo é de 0,19 m. Considerando-se a velocidade do som no ar igual a 334 m/s, qual é o valor aproximado da freqüência dessa onda ?
 - (A) 1760 Hz
 - (B) 880 Hz
 - (C) 586 Hz
 - (D) 440 Hz
 - (E) 334 Hz
- 33. Assinale a alternativa que preenche corretamente as lacunas do texto abaixo.

O alarme de um automóvel está emitindo som de determinada frequência. Para um observador que se aproxima rapidamente deste automóvel, esse som parece ser de freqüência. Ao afastar-se, o mesmo observador perceberá um som de freqüência.

- (A) maior igual
- (B) maior menor (C) igual igual
- (D) menor maior
- (E) igual menor

34. Assinale a alternativa que preenche corretamente as lacunas do texto abaixo.

Segundo a interpretação vigente, a radiação eletromagnética tem uma natureza bastante complexa. Em fenômenos como interferência e difração, por exemplo, ela apresenta um comportamento Em processos de emissão e absorção, por outro lado, ela pode apresentar comportamento, sendo, nesses casos, descrita por "pacotes de energia" (fótons) que se movem no vácuo com velocidade $c \cong 300.000 \; \text{km/s}$ e têm massa

- (A) ondulatório ondulatório nula
- (B) ondulatório corpuscular nula
- (C) corpuscular ondulatório diferente de zero
- (D) corpuscular corpuscular nula
- (E) ondulatório corpuscular diferente de zero
- 35. Supondo que a meia-vida de um isótopo radiativo seja um dia, após 48 horas a quantidade restante deste isótopo será
 - (A) 1/2 da quantidade inicial.
 - (B) 1/4 da quantidade inicial.
 - (C) 1/24 da quantidade inicial.
 - (D) 1/48 da quantidade inicial.
 - (E) zero.