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PREFACE TO THE FIRST EDITION

This book is designed to emphasize those aspects of classical electricity
and magnetism most useful to the modern student as a background both
for experimental physics and for the quantum theory of matter and radia-
tion. We have made no attempts at novelty beyond those inherent in
looking at subject matter that has become a part of the foundations of
physics, and has thus gained in usefulness as it has lost in immediacy.
While no rigid adherence to historical development is attempted, the em-
phasis is on physical theory as evolved from fundamental empirical laws
rather than on mathematics and strict internal logic. Thus Maxwell’s
equations are derived from the experimental laws of Coulomb, Ampere,
and Faraday, instead of being postulated initially. In the opinion of the
authors the physical concepts emerge more clearly in this way, and the
approach represents the manner in which physical theory evolves in prac-
tice. The field formulation is preferred to the action-at-a-distance view-
point even in electrostatics, however, since for the conventional treatment
it is more readily extended to the nonbtatic case. This despite the fact
that it is possible, both for static and for nonstatic phenomena,.to formu-
late an entirely consistent electromagnetic theory based on the delayed-
action-at-a-distance principle.

The climax of 19th century electrodynamics was the theory of eleetro-
magnetic waves and its confirmation, and it is inevitable that any treat-
ment of the subject today includes the principles of recent applications
involving metallic boundaries. The introduction of the electrodynamic
potentials and the Hertz solution of the wave equation are treated in the
conventional way, but we have chosen to introduce the special theory of
relativity before undertaking the theory of the electron. Historically the
evidence was building up simultaneously along two separate lines, and
many of the early difficulties in the derivation of radiation theory as ap-
plied to elementary charges were clarified in a very simple way by rela-
tivistic considerations. This approach has the advantage that the other
problems of classical electron theory, especially those which have taken
on added significance with the advent of quantum theory, can be ex-
hibited more clearly.

Rationalized mks units are used throughout, simply because the ma-
jority of modern reference books and papers are now written in this sys-
tem. Especially in the consideration of the electron, all quantities are so
written that they can be immediately translated into Gaussian units. In
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vi PREFACE TO THE FIRST EDITION

Appendix I will be found a discussion of the units in current use, and
tables contain the fundamental relations of electrodynamics expressed in
various systems as well as numerical conversion factors.

The text is based on graduate course lectures given by one of us (Panof-
sky) at the University of California and Stanford University. Early
mimeographed notes on much of the subject matter were prepared with
the aid of Howard Chang, Roger Wallace, Richard Madey, and Lee
Aamodt, whose help is gratefully acknowledged. The editorial help of
Miss Laurose Becker is also acknowledged with thanks.

The reader is assumed to have had courses in advanced calculus, differ-
ential equations, vector analysis, and, at least for the latter portions, is
assumed to be familiar with classical mechanics on the graduate level.
Prior knowledge of tensor analysis would be helpful, but is not necessary.
References to appropriate collateral and background material are included
at the end of each chapter, with some indication of what relevant material
is to be found in each reference, and a full bibliographical list is given at
the end.

The presentation is designed to be somewhat flexible, depending on the
organization of course material. For purely theoretical courses Chapters
4 and 5, together with portions of other chapters dealing with particular
applications of potential theory, etc., may be omitted entirely. Some of
the material in Chapter 12 is often covered in optics courses. And if a
course in relativity theory is given separately Chapters 15-18 may be
omitted, since we have endeavored to make Chapter 19 continuous with
Chapter 14, insofar as the theory of radiation is concerned.

A final word about problems: for the most part they are designed to
supplement the text. It had been our intention to give credit to original
sources for those we did not invent ourselves, but in almost every case
this turns out to be impossible: like discoveries, problems are rarely made
singly, and in a subject as old as this ingenuity mainly recreates old ideas.
And despite our adherence to the exhortation used by Becker, “be ye
‘doers of the word and not hearers only, deceiving your own selves,” we
have not concentrated primarily on problem solving. The heart of the
matter, we believe, lies in the ideas and their development.

W. K. H. P.
M. P



PREFACE TO THE SECOND EDITION

The second edition of Classical Electricity aond Magnetism is intended
principally to remedy errors and madequacies of the first edition. We
have attempted to correct errors and make extensive revisions without
changing the basic approach to the material; we hope that in so doing
we have responded to the many helpful comments we have received from
users of the book without introducing too many departures. The only
radical change is in the treatment of radiation reaction, which has been
completely rewritten and introduces new concepts. New material has
been added in several instances: there is a new chapter on the basic prin-
ciples of magnetohydrodynamics; the use of ‘‘superpotentials” for ob-
taining symmetric expansion of electric and magnetic wave-fields has
been introduced; the material on the classical radiation of electrons
moving in a circle has been expanded; the motion of particles with spin
is treated; and the classical forms of such theorems as the dispersion
relation and the ‘“‘optical” or ‘‘shadow’ theorem are now included.

We have not attempted to make the methods used in this book uni-
farm; on the contrary, we believe that there is a great deal of educational
value in the demonstration that many of the methods used are equivalent.
As before, we stress physical ideas rather than mathematical technicques.

Without the generous help of many correspondents, who have pointed
out errors or transmitted comments, this revision would not have been
possible. This help has been so extensive that we cannot acknowledge
each contribution; we are, however, particularly grateful to ¥. Rohrlich
for a helpful exchange of correspondence. We are also much indebted to
Mrs. Laurose Richter for assistance in preparing the manuseript and
to Mrs. Adeéle Panofsky for preparing the index.

W. K. H. P.
M. P.

Stanford and St. Louis
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CHAPTER 1
THE ELECTROSTATIC FIELD IN VACUUM

The interaction between material bedies can be described either by
formulating the action at a distance between the interacting bodies or
by separating the interaction process into the production of a field by
one system and the action of the field on another system. These two
alternative descriptions are physically indistinguishable in the static case.
If the bodies are in motion, however, and the velocity of propagation of
the interaction is finite, it is both physically and mathematically advan-
tageous to ascribe physical reality to the field itself, even though it is pos-
sible to replace the field concept by that of “delayed” and “advanced”
direct interaction in the description of electromagnetic phenomena. We
shall formulate even the electrostatic interactions as a field theory, which
can then be extended to the consideration of nonstatic cases.

1-1 Vector fields. Field thecries applicable to various types of inter-
action differ by the number of parameters necessary to define the field
and by the symmetry character of the field. In a general sense, a field
is a physical entity such that each point in space is a degree of freedom.
A field is therefore specified by giving the behavior in time at each co-
ordinate point of a quantity suitable to describe the physical content.

The types of fields possible are restricted by various considerations.
Fields are classified according to the number of parameters necessary to
define the field and by the “transformation character” of the field quanti-
ties under various coordinate transformations. A “scalar” field is described
by the time dependence of one quantity at each point in space, a “three-
dimensional vector field” by three such quantities. In general, an “ath-
rank tensor field” requires the specification of d” components, where d is
the dimensionality of the space in which the field is defined. A scalar field
is a zero-rank tensor field, and a vector field is a first-rank tensor field.

The field description of a physical entity is independent of the particular
choice of coordinate system used. This fact restricts the transformation
properties of the field components under coordinate transformations. We
consider two types of transformations of coordinates. “proper” and “im-
proper” transformations. Proper transformations are those which leave
the cyclic order of the coordinates invariant (i.e., do not transform a
right-handed into a left-handed coordinate system in three dimensions);

1



2 THE ELECTROSTATIC FIELD IN VACUUM [cHAP. 1

translation and rotation are proper transformations. Improper transfor-
mations, such as inversion of the coordinate axes and reflection of the
coordinate system in a plane, change the cyclic order of coordinates.

A basic vector is the distance r connecting two points; the components
of r may be designated by r.. The components V., of a vector field V trans-
form like the components r, under both proper and improper transforma-
tions. A scalar is invariant under proper and improper transformations.
The components P, of a pseudovector field P transform like the compo-
nents 7, under proper transformations, but change sign relative to r,
under improper transformations. A pseudoscalar is invariant under proper
transformations but changes sign under improper transformations.

The electric field is a three-dimensional vector field, i.e., a field definable
by the specification of three components. The theory of vector fields was
developed in connection with the study of fluid motion, a fact which is
betrayed repeatedly by the vocabulary of the theory. We shall consider
some general mathematical properties of such fields before specifying the
physical content of the vectors.

All vector fields in three dimensions are uniquely defined if their circula-
tion densities (curl) and source densities (divergence) are given functions
of the coordinates at all points in space, and if the totality of sources, as
well as the source density, is zero at infinity. Let us prove this theorem
formally. Consider a three-dimensional vector field V(z, y, 2) such that

v.-V=s5, (1-1)
vXV=mc (1-2)

Equation (1-2) is self-consistent only if the circulation density c is irrota-
tional, i.e., if

v-.-c=0. (1-2")
We shall first show that if
V= —V¢+ V XA, (1-3)
where
1 s(xh)
o(zs) = = [ _s(ze)_ g (1-4)
( 4T 7(Xa, Th)
and
1 c(xld)
Alxy) = — | ———dvV, (1-5)
@) = 5r | uat

then V satisfies Eqs. (1-1) and (1-2).



1-1] VECTOR FIELDS 3

It is necessary to examine the notation of Eqgs. (1-4) and (1-5) before
proceeding with the proof. The symbol z. stands for z, y, z at the field
point; the symbol z. stands for ', ¥/, 2’ at the source point; the function
(%, 22) is the symmetric functlon

a=3

E (xa — x:t)z

a=1

r(Xq, xh) =

representing the positive distance between field and source point. The
reader should note carefully the functional relationships explicit in Egs.
(1-4) and (1-5). In integrals of this type these functional dependences
will often not be fully stated; for example, we may write the volume
integrals

6 = 1/ v, (1-4")

= _—'/ dv’ (1-5')

as a short notation. We shall sometimes use R for the radius vector from
an origin of coordinates to the field point z,, and & for that of a source
point z,; then r = |[R — §|.

Let us demonstrate that V as expressed by Eq. (1-3) is a solution of
Egs. (1-1) and (1-2):

V.-V=—V%% + V- (VXA = —V%

__i 2{]§ 1}.
= 47rV rdv

The Laplacian operator V2 operates on the field coordinates; hence

v= -1 w2 (L) ay B
V.-V = 47r‘/sV <T>dv. (1-6)

Now we can show that

VZ{ 1 }=—47r6(r), (1-7)

(X, Th)

Il

where &(r), the Dirac é-function, is defined by the functional properties
é(r) = 0, r # 0, ie., Z, 7 T4 (1-8)
f 5(r) dv’ = 1, (1-9)



4 THE ELECTROSTATIC FIELD IN VACUUM (cHAP. I

if the point r = 0 is included in the volume of integration, and by
[1h) 8@) @ = f(za), (1-10)

for any arbitrary function f so long as the volume of integration includes
the point r = 0. The §-function is not an analytic function but essentially
a notation for the functional properties of the three defining equations. It
will always be used in terms of these properties.

Since it is evident by direct differentiation that V2(1/r) = 0 for r = v,
we have only to prove that

/ Vi(1/r) dv = —Aw (1-11)
in order to verify Eq. (1-7). [In Eq. (1-11) the point r = 0, that is,
Ta = Zs, is included in the volume of integration.] By the application of

Gauss’s divergence theorem, applicable to any vector V,*

/v-Vdv—_—.fv-ds,

/ v? (-:-)dv' / v (%)-dS’
:_["r‘js':——[dsz,

where Q is the solid angle subtended at x, by the surface of integration
S’ over the variables zs. Since S’ includes x,, we have simply j dQ = 4,
and Eq. (1-11) is verified. Hence from Egs. (1-6) and (1-10),

it is seen that

I

ve - L[ (Nar - / ) 8(6) df = _.
V:V= yp sV (r) dv’ = [ s(zh) 8(r) dv' = s(z.), (1-12)
which was to be proved.

* Strictly speaking, Gauss’s divergence theorem is not necessarily applicable,
since the function V = V(1/r) is singular at r = 0. If, however, we remove
the singularity by substituting for 1/r the function (1 — e~"/¢)/r, for example,
where a is an arbitrarily small radius, then

1 —ria —ria I —ria
v[;u-—-e ’)]=~-r3'§(1—e ’)+;-3-(%e ’)-

Since the magnitude of the second term varies only as r~1, its surface integral
over a small sphere surrounding the point r = 0 will vanish as the radius of
the sphere goes to zero.



1-1] VECTOR FIELDS 5

Similarly,
VX V= —VXVé+VX(VXA = V(Vv-A) — VA

- ilfe v Q- [ D} s

We shall be able to show that the first integral vanishes if ¢ is bounded in
space. If we anticipate this result, we see immediately, from Eq. (1-7),
that

VX V= / c(zl) 8(r) &' = c(xa), (1-14)

so that Eq. (1-2) is also satisfied.

To prove that the first term of Eq. (1-13) vanishes, let us examine the
coordinate variables involved in the integrand. The operator Vv has the
components 3/8z.. If we introduce the operator V, = 9/dx,, operating
on the source coordinates, then for any arbitrary function g[r(z., za)], we
have

Vg = —Vg. (1-15)

Therefore the first integral of Eq. (1-13) may be written

I— /(c-v)v(;l;)dv’z- /(c-v’)v’(%)dv’.

The differential operators now operate on the variables of integration and
we may integrate by parts. Each component of I becomes

= fen ()
A0 PR CRPO P

The second integral vanishes because the divergence of ¢ is zero [Eq.
(1-2")]. The first term can be transformed to a surface integral by means
of Gauss’s theorem; if ¢ is bounded in space the surface may be taken
sufficiently large so that c is zero over the entire integration. Hence
Eq. (1-16) is zero, and the proof is complete.

We have thus proved that if the source density s and the circulation
density ¢ of a vector field V are given everywhere, then a solution for V
can be derived from a scalar potential ¢ and a vector potential A. The
potentials ¢ and A are expressed as integrals over the source and circula-
tion densities.



6 THE ELECTROSTATIC FIELD IN VACUUM [cHAP. 1

It can be proved that this system of solutions is unique if the sources
are bounded in space, i.e., there are no sources at infinity, and thus the
fields themselves vanish at sufficiently large distance from the sources.
Suppose that there are two functions, Vy and V5, which satisfy Eqgs. (1-1)
and (1-2). Their difference, the function W = V; — V,, obeys the con-
ditions

V-W =0, (1-17)

VXW=0, (1-18)

at every point in space and is zero at infinity. If we now show that W
vanishes everywhere, we shall have proved that for finite sources there is
only one solution for Egs. (1-1) and (1-2). To prove this we note that if
Eq. (1-18) is satisfied we can always put

W= —-WW (1-19)
and, from Eq. (1-17),
VY =0 (1-20)

everywhere. If we apply Gauss’s divergence theorem to the vector yVy,
we obtain

[vvy-ds = [wv?y + (V) dv. (1-21)

The left side vanishes if the boundary is taken at sufficiently large dis-
tance from the sources, since ¢ tends to zero at least as 1/r, and the first
term on the right is identically zero because of Eq. (1-20). Therefore
Eq. (1-21) reduces to

[ (V)2 dy = [ (W)2dy =0, (1-22)

and hence W = V; — V, = 0 everywhere. Thus V as given by Eq. (1-3)
is unique.

We have gone into this formal proof in great detail not only because
the theorems are of fundamental importance but also because the methods
are of general-usefulness throughout the study of electromagnetic fields.
For convenience, let us summarize the results obtained:

(a) If the source density s and the circulation density ¢ of a vector
field V are given for a finite region of space and there are no sources at'
infinity, then V is uniquely defined.

(b) If V has sources s but no circulation density ¢, V is derivable from
a scalar potential ¢.

(¢) If V has circulation density ¢ but no sources s, V is derivable from
a vector potential A.
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(d) V is always derivable from a scalar and a vector potential.

(e) At points in space where s and ¢ vanish, V is derivable from a scalar
potential ¢ for which V3¢ = 0, or from a vector potential A for which
vV X V X A = 0. We may add that at such points the field is said to he
harmonzc.

(f) If s and c are identically zero everywhere, V vanishes everywhere.

(g) The unique solution for V in terms of 8 and ¢ is given by means of
the potentials as expressed by the integrals (1-4) and (1-5).

(h) We have established a systematic notation for source and field
coordinates. If we add the convention that the vector r points from
source to field point we may extend our list of useful mathematical re-
lations:

Vi3(1/r) = —4w §(r),
Vig(r)] = —V'[g(n)],
Vr = —V'r = 1/r,
V.r = -43.

These properties of general vector fields will be indispensable in the
physical considerations which follow. We shall have a consistent field
theory representing the empirical laws of electricity and magnetism when.
we have written these laws as a set of equations giving the source and
circulation densities, i.e., the divergence and curl, of the field vectors rep-
resenting the electromagnetic fields. This is the fundamental program of
classical electromagnetic theory.

1-2 The electric field. We shall first consider the electrostatic field in
vacuum. The electric field is defined in terms of the force produced on a
test charge ¢ by the equation

limit T = E, (1-23)

¢—0 4
where F is the force (newtons) on the test charge ¢ (coulombs). The
definition is entirely independent of the system of units, but in the mks
system* the electric field E defined by this equation is in volts per meter.
The limit ¢ — 0 is introduced in order that the test charge will not influ-
ence the behavior of the sources of the field, which will then be independent
of the presence of the test body. The requirement that the test charge
be vanishingly small compared with all sources of the field raises a funda-

* See Appendix I for a discussion of units and the relations between units of
various systems.
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mental difficulty, since the finite magnitude of the electronic charge does
not permit the limit ¢ — 0 to be carried out experimentally. This re-
striction therefore limits the practical validity of the definition to cases
where the sources producing the field are equivalent to a large number of
electronic charges. Definition (1-23) is thus entirely suitable only for
macroscopic phenomena, and we shall have to exercise great care in apply-
ing it to the treatment of the elementary charges of which matter is actually
composed. For microscopic processes the field cannot be defined “opera-
tionally” in terms of its effect; it must be described in terms of its sources,
assuming that the macroscopic’laws of the field sources are still valid.

The field E is a three-dimensional vector (not pseudovector) field if we
adopt the convention that the charge ¢ is a scalar (not a pseudoscalar). In
terms of this convention the transformation character of both the electric
and (later) the magnetic fields is defined.

1-3 Coulomb’s law. The experimentally established law for the force
between two point charges ¢n vacuo was originally formulated as an action
at a distance:

F, = 12— Dilzy (1) (1-24)

Here F, is the force on charge g, due to the presence of charge ¢, and r
is the radius vector position of charge ¢, measured from an origin located
at charge q;; € is a constant, 107/4mwc? farads/meter in this-system of
units; ¢ is the experimental value of the velocity of propagation of plane
electromagnetic waves in free space (see Appendix I), and all distances are
measured in meters. In the mathematical identity on the right the gra-
dient operator acts on the coordinates of the charge ¢p. The law applies
equally to positive and negative charges, and indicates that like charges
repel, unlike charges attract. If the test charge in Eq. (1-23) is assumed
positive, comparison with Eq. (1-24) yields immediately

E=-1 I___ 9 ¢ -1-), (1-25)

giving the electric field E at the position r due to a charge ¢ at the origin
of the radius vector. Here g corresponds to ¢; of Eq. (1-24).
We can prove Gauss’s flux theorem

/ E.-ds =1 (1-26)
S €9

as a direct consequence of Coulomb’s law: Consider an element of sur-
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Fig. 1-1. Elements of surface and solid angle contributing to the total electric
flux of Gauss’s theorem.

face dS, expressed as a vector directed along the outward normal of the
element as shown in Fig. 1-1, at a distance r from a charge g at a point za.
By taking the scalar product of dS and both sides of Eq. (1-25) we secure

1
E-dS = ;;%r .dS = Zﬁgdﬂ. (1-26")
Since the integral of dQ over a closed surface which includes the point z,
is just 47, Gauss’s theorem follows immediately. The principle of super-
position engbles us to sum the separate fields of any number of point
charges, so that ¢ of Eq. (1-26) is the total charge inside the boundary
surface S.
If we apply the divergence theorem to E,

[SE-dS=fv-Edv,

and make use of the fact that the total volume integral of the charge
density p is simply the total charge ¢, the application of the flux theorem
enables us to put Eq. (1-25) into the form

v.E=L. (1-27)
€o

Here p is the charge per unit volume at the point where the electric field

is E. Since the curl of the gradient of a scalar is zero, it further follows
from Eq. (1-25) and the principle of superposition that

VXE-=0. (1-28)

The electrostatic field is thus irrotational. That the electrostatic field is
completely defined by a charge distribution then follows from the theorem

that a vector field is uniquely determined by the curl and the divergence
of the field.
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It is instructive to note that Eqs. (1-27) and (1-28) follow directly
from Coulomb’s law in the form

1 N
E(@) = e, / p(re) 5 dv (1-29)
I 1\ 4
- 4me [pV (7‘) dv'. (1-30)
It follows that
. . 1 2_]_‘ ’—_l/ ’ ,_p(xa).
voE= 41eq /pV (1-) dv' = € p(xs) 8(r) dv’ = e (1-27"
Also
VXE =" — /va(l)dv’—o (1-28’
o 47r€0 p r - Y )

since the curl of a vector expressible as a gradient vanishes identically.
For a point source ¢ we have directly from Eq. (1-25):

V.-E= 21 y2 <l> — q§@__ (1-217)

T 47eg r €o

14 The electrostatic potential. Since the static field is irrotational, it
may be expressed as the gradient of a scalar function. We may define an
electrostatic potential ¢ by the equation

E = —V¢. (1-31)

In Cartesian coordinates the components of the field parallel to the x, axes
respectively are given by

_ e )
E, = 3z, (1-32)

The application of the general vector relation known as Stokes’ theorem,
[(vxEB)-ds = $E- dl (1-33)

where dl is the infinitesimal vector length tangent to a closed path of
integration, leads to

fE .dl = 0, (1-34) -

since the curl of E is everywhere zero. This shows that the electrostatic
field is a conservative field: no work is done on a test charge if it is moved
around a closed path in the fie}d. Since the work done in moving a test
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charge from one point to another is independent of the path, we can
uniquely define the work necessary to carry a unit charge from an infinite
distance to a given point as the potential of that point. If one considers
fields of less than three dimensions, i.e., sources extending to infinity in
one or more directions, this definition will lead to difficulties and a point
other than infinity must be taken as a reference point. So long as only
finite sources are considered, however, this definition of potential is both
adequate and convenient.
The substitution of Eq. (1-31) in Eq. (1-27) leads at once to Poisson’s
equation “
V¢ = —p/eo, (1-35)

and in a region of zero charge density to Laplace’s equation,
V¢ = 0. (1-36)

The fundamental problem of electrostatics is to determine solutions of
Poisson’s equation appropriate to the conditions under particular con-
sideration.

1-5 The potential in terms of charge distribution. The electrostatic
potential at a given point was defined by Eq. (1-31) in terms of the electric
field at that point. Since the source density of the electrostatic field is
just p/€o, we know from Eq. (1-4) that the potential is

S(ra) = 1 / p(xs) dv

47€g r(Ta, 25

in terms of the charge density at all points in space. I‘ield theory, however,
permits us to find a solution even if p(xe) is known only within an arbitrary
surface S; the effect of the other sources is then replaced by the knowledge
of the boundary values of the potentials or their derivatives on the surface S.

To obtain an explicit expression for ¢(x,) in terms of p within S and ¢ and
V¢ on S, we make use of Green’s theorem, which states

[6v% — yv%) @ = [(e¥¥ —y¥e)-dS. (13D

Here ¢ and ¢ are scalar functions of position that are continuous with
continuous first and second derivatives in the region of integration and on
its boundary. The integration will be taken over the primed coordinates
x., so that the field point x, is simply a parameter. Let ¢ be the electro-
static potential defined in Eq. (1-31), and let y = 1/r, the point source
solution of Laplace’s equation. Since V/(1/r) = r/r® and we have from
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Eq. (1-7) that V'3(1/r) = V3(1/r) = —4w$§ (r), substitution of these ex-
pressions into Eq. (1-37) gives

—4r / [¢(:c2,) 5(r) — 1 3@-’5'2] Q' = f [¢3- — -Yf-‘?]- ds’.

r 4Te€g r3 T
Hence

1 A R 1 ’
P(Ta) = /p(f )dv +~4~7;/<—¢;r§+%? - ds’. (1-38)

47€g

Note that we have made use of the functional properties of the s-func-
tion. Clearly, Eq. (1-38) could also have been obtained without the aid of
the é-function by a limiting process. Such a process was actually implicit
in the derivation of Eq. (1-7), however, so that it is unnecessary here.

Let the integrals be carried out over a volume v bounded by a surface S.
The first integral of Eq. (1-38) is simply the contribution of the volume
charge distribution within ». Note that the distance r is a function of the
coordinates both of the point of observation . and of the point of integra-~
tion 2., imrbothr the volume and the surface integrals.

The surface integrals of Eq. (1-38) summarize the effect of any charge
distribution outside the region v and thus not contained in the first term.
We therefore conclude that the potential at any point within S is uniquely
determined by the charge distribution within S and by the values of ¢
and the normal component of V¢ at all points on the surface S. In par-
ticular, the potential within a charge-free volume is uniquely determined
by the potential and its normal derivative over the surface enclosing the
volume. What we have shown here is that knowledge of the potential
and its normal derivative over the surface is suffictent to determine the
potential inside, but we have not shown that both these pieces of infor-
mation are necessary. We shall see later that it is, in fact, sufficient in a
charge-free region to have either the potential or its normal derivative
over a surface in order to determine the potential at every point within
the surface except for an arbitrary additive constant. The reason is that
¢ and V¢ may not be independently specified over the surface, since ¢
must be a solution of Laplace’s equation.

In later sections we shall be led to a physical interpretation of the
surface integrals as equivalent to a charge and dipole distribution on the
surface S. We shall therefore be able to conclude that the potential can
be calculated by the direct superposition of the individual potentials of
all the volume charge distribution, but that we can, if we wish, replace
any part of the distribution by an equivalent surface charge layer and
dipole layer distribution.

The volume term of Eq. (1-38) can be looked on as being a particular
integral of Poisson’s equation, while the surface terms are complementary
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integrals of the differential equation in the sense that they are general

solutions of the homogeneous equation, i.e., Laplace’s equation.

1-6 Field singularities. We have written the solution of the potential
problem as a sum of boundary contributions and a volume integral extend-
ing over the source charges. These volume integrals will not lead to singu-
lar values of the potentials (or of the fields) if the charge density is finite.
If, on the other hand, the charges are considered to be surface, line, or
point charges, then singularities will result as shown in Table 1~-1. Note
that if either surface or line charges are infinite in spatial extent (i.e., the
fields are considered one- or two-dimensional) the potential cannot be re-
ferred to infinity. Although these singularities do not actually exist in
nature, the fields that do occur are often indistinguishable, over much of
the region concerned, from those of simple geometrical configurations. The
idealizations of real charges as points, lines, and surfaces not only permit

TasLE 1-1

FIELD SINGULARITIES

Type of Behavior of Behavior of

charge potential near field near
distribution distribution distribution
Surface r Constant
Line log r r—1
Point r—1 r—2
Point 2" pole yn—l r—n—2

great mathematical simplicity, they also give rise to convenient physical
concepts for the description and representation of actual fields. For these
reasons we shall now discuss in. more detail the nature of potentials corre-
sponding to such sources.

1-7 Clusters of point charges. The potential ¢ at the point z,, due to
the charge ¢ located at the point z, is given by

_ 1 g_ 1
T 4meg v 4meq

¢ | q |
@ — 202+ (y — ¥)2 + (¢ — 2)2]V2

_ 1 q , »
o 471‘60 [l[E(xa — x;)2]l/2l} (1 39)

It has a first-order singularity at the point x. corresponding to r = 0.
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Singularities of higher order can be generated by superposing on this po-
tential a potential corresponding to an equal charge of opposite sign, dis-
placed a distance Az’ from the original charge. This process is equivalent
to differentiating Eq. (1-39) with respect to z.. We have noted in Eq.
(1-15), however, that differentiation of a function of the relative coordi-
nates only with respect to z. gives the same result as differentiation with
respect to z. except for sign, and at the field point Laplace’s equation
holds. Since the derivative of a solution of Laplace’s equation is also a
solution, the process of differentiation with respect to the source point
as physically described above will generate new solutions with succes-
sively higher order singularities near r = 0. Such potentials are called
multipole potentials.
For a single differentiation, we obtain

RO 9\ qAZ(x — z') cos 6

I .
—ax 4meqrs (g 42') 4regr? (1-40)
If we let
lim ¢Ax = p'V (1-41)
q—®
Ax'--r()

be the dipole moment of the distribution (positive from —gq to +q as
indicated in Fig. 1-2), we can write this potential as

1 1 1 1 1 pP.
(2) _ M, e (1) —~ | LA p r
¢ = 41reop v (r) 47reop v (r) 4mwey 13
(1-42)

(The sign conventions for r and V have been discussed in Section 1-1.)
This solution is the dipole potential.

The potential distribution, and consequently the nelds of higher mo-
ments of the charge, or multipoles, can be generated by the same method
of geometrical construction. For example, the potential field of a gn+l
pole is generated by taking the potential of a 2" pole and subtracting from

Fo

»
(4

4

—q +q

Fi1e. 1-2. The generation of an electric dipole.
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it the potential of another 2" pole that is displaced infinitesimally in an
arbitrary direction (or by superposing the potential of the displaced 2"

pole with opposite sign).
The general form of the potential corresponding to a 2" pole is thus

(n) n n, (n)
¢eny _ _P J (l> _ (=D o 1), (1-43)
¢ 4men! gy dxh ... \T 4megn! 9r.dxs... \r

where in general p™ would be an nth-rank tensor in three dimensions.
The displacement by which a multipole is generated from one of lower
order need not be along coordinate axes, but the derivative corresponding
to an oblique displacement can be written as a sum of derivatives with
respect to r, y, 2z, having the direction cosines of the displacement as
coefficients. A few examples of simple multipoles are shown in Fig. 1-3.
In the special case where all the displacements are in one direction the
problem has axial symmetry and only one angle is needed to specify the
position of the field point. For a linear 2" pole,

n) n (n)
- B ___p ._Q__. l P Pn (COS 6)
¢ (ZL‘, Y, z) - 47-‘-607” ox'™" (T> o 4meo prtl ’

(1-44)

where P,(cos 6) is the Legendre polynomial of order n which may be de-
fined by the relation

P, (cos 6) _ (=D a" (1)

prtl nl g

- (1-45)

in which 6 is the angle between x and r. In the linear case p™ is defined
by the recurrence relation

lim np™~ P Az, = p™,
azx -0

(n—1)
—®

where Az, is the displacement leading to the 2™ pole.

Equation (1-43) can be recognized as the nth term of a general Taylor
expansion of 1/r in terms of the source coordinates. The coefficients are
the multipole moments as defined in terms of the specific charge distribu-
tion referred to above. We shall now show that the potential of an arbi-
trary charge distribution p(z.) of finite extent can at large distances al-
ways be expressed as the sum of multipole potentials where the coefficients
are certain integrals (moments) of the charge distribution.

To facilitate the proof of this statement, we shall choose the origin of
coordinates in or near the charge distribution (I'ig. 1-4). Let R be the
distance from the origin O to the field point, i.e., let the components of
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Y
—q
)
o Ar ° Ax o S
+4q —q +1q
o2 = qAT)2 (3 cos?6 — 1) p@ Po(cosb)

4meq 3 B 4meq I8
p? = 2ly(Ax)?

(a)
Y
+qo —qo
° Az 4qo Az —go Ax ° -
—q +q
+qo —qo
0@ = q(Az)3 15 cos3 8 — 9 cos § _ PP (cos 6)
T 4re rt B 4reprt
p® = 3lq(ax)3
(b)
Lo
//.
y L7 2 2(z,)
+ 0 & O T
Ar  —¢q z,
3gAzAy cos 6 sin 0 z P 4(222y22) )
¢(‘2r2y) = i y_(():s s J LTy (1,
4meg
()

15¢(Az) (Ay) (Az) cos a cos B cos y

¢(212 y22) —

4regrt
(d).

Fic. 1-3. Examples of multipoles: (a) linear quadrupole; (b) linear octupole;
(c) two-dimensional quadrupole; (d) three-dimensional octupole.
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Fic. 1-4. Geometry for the multipole expansion of the potential at P in
terms of moments of the charge distribution p about the origin O.

R be z.. The coordinate vector whose components are z, is designated
by & We may then expand 1/7 in powers of ro about O, assuming that
a/R <« 1, where a is a limiting dimension of the bounded distribution of
charge. By Taylor’s theorem,

1 1 d (1 1 a2 /1
Lodsal2 ()] +dwal ()] 4o 0w
r R ax; r —R 2! B axaaxé r R

In Eq. (1-46) we are employing the “summation convention” which we
shall continue to use throughout: when indices are repeated in the same
term summation over these indices is implied. Upon substituting Eq.
(1-46) in the general potential, we obtain the “multipole expansion”:

b)) — f ICARS

4:71'60 r

_ [ f eyt / o i
~ 4weo {R fp '+ [ax;(rﬂr_—.a Tap 4o
2
—I——%[ 9 (1>] fxf,xé pdv + .- } . (1-47)
2N 927 025 \"/ | —r

The coefficients represent the moments of the charge distribution: fp dv’
is the total charge ¢, fzep dv’ is the a-component of the dipole moment,
etc. The radial and angular dependence of each term in Eq. (1-47) is
clearly identical with that given by Eq. (1-43).
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Note that the words “dipole,” “quadrupole,” etc., are being used in
two ways: first to describe a specific charge distribution, and secondly to
designate moments of an arbitrary charge distribution. Both physical
quantities give rise to the same potential distribution.
The symmetric quadrupole tensor

Qus = f hah p dv’ (1-48)

has six components when referred to arbitrary axes, and has three diagonal
components when referred to its principal axes; in the latter case three
parameters are needed to specify the orientation of the principal axes
relative to an arbitrary coordinate system. We shall now show that the
quadrupole potential ¢, which is the third term in Eq. (1-47), depends
on only two quantities when referred to principal axes.

We have
1 a2 /1
¢ = st ()]
2 oat0as \7 /4"

which is equivalent to

2
ROp- %{[ 9 (_1_)] (3Qus — 5aﬁQW)} , (1-49)
dxdxs \"/l—r

where 8.5 = 0 for a # Band 8,6 = 1fora = B1is the unit second-rank
tensor. (By the summation convention @,y is the sum of the diagonal
terms of the quadrupole tensor.) The added term in Eq. (1-49) does not
affect the potential, since

2
g — (1) _ 2 (1) — 0. (1-50)
dxh dxh \T T

Hence Q.s in Eq. (1-49) can be replaced by Dag/3, where

Dog = 3Qag — 0asQyy- (1-51)

When reduced to principal axes it is evident that Ds has only two inde-
pendent components, since Daq = 0. If Eq. (1-51) is written out in Cartesian
components, it is seen that D.s (conventionally called the “quadrupole
moment”) depends on differences of the second moments Qqz, Qyy, Q=
when referred to principal axes.

If the charge distribution has an axis of symmetry, say the z-axis,
the potential depends on the single quantity

D = 3Q:ca: - (sz -+ ny -+ sz) == fp(3x;2 — £2) dv’, (1-—52)

which is a direct measure of the eccentricity of the distribution.
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1-8 Dipole interactions. Consider an electric dipole p in an electric
field E of arbitrary spatial variation. From the definitions of electric field
and the electric dipole, we have

Fo=ps-2E. or F= (p-VE, (1-53)
633,3
since for a dipole of length Ax’ the ath component of the force F on each
end of the dipole changes from F, to Fu -+ (9F./dx5) Axg; the limiting
process (1-41) generates Eq. (1-53).

Equation (1-53) can be written as

= (p-V)E = V'(p-E) — p X (V' X E). (1-54)

Hence in an electrostatic field (for which ¥/ X E = Q) the force F can be
derived from an energy U such that

F=—vU, (1-55)

where
U= —(p:E). (1-56)

This gives the energy of a dipole of fixed moment p as a function of its
orientation and position in the field E. If the field is not irrotational (as
in the presence of time-varying magnetic fields), the force expression
(1-53) remains correct but cannot be derived from a potential energy.

The torque L acting on the dipole can be obtained by differentiation of
Eq. (1-56) with respect to the angle between p and E or by direct con-
sideration of the forces. One obtains

L=rpXE. (1-57)

The direction of L tends to align the positive directions of p and E.

Let us now consider the interaction force and energy between two di-
poles, such as those shown in Fig. 1-5, whose moment vectors are oriented
in space at an arbitrary angle with each other. On combining the force

P

o1

"\

F1c. 1-5. Interaction of two dipoles.

(due to p2)

¢2] ,
T2 _ ] (due to py)

7 E2
Po
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equation above with the potential equation (1-42) and the field equation
(1-31), we have for the force F on dipole 1 in the field E of dipole 2,

—1 1 1 1
¢—47reop2°v(;)7 E—“v¢—47r€0v[p2v(;>]’

F= (o VE = @1- V) ‘V[Pz' v (1)]} (1-58)

The interaction energy between the two dipoles may be obtained by
inserting the field E above into the expression for the energy U. We
find for the energy U;s of dipole 1 in the field of dipole 2, and conversely

for Uy :
-V 1
U12 = '—'plE = —%—e—a‘z[pz V(;>})

Uiz = 1 [pl P2 _ % (p1-1)(P2- 1’)]' (1-59)

r3
This is the general expression for the interaction energy of two dipoles.

1-9 Surface singularities. Surface singularities of the second order or
dipole form are of particular interest in both electrostatics and magneto-
statics. Let us consider a double layer charge arrangement with a dipole
moment per unit area designated by =. The potential arising from such a
distribution is given by

1 T-T
Tmeg e ds. (1-60)

¢:

This expression reduces, in the case when 7 is uniform and directed along
the normal to the surface outward from the observation point, to

_—frl [r-as _ —pl,
T 4me r3  4meg

¢ (1-61)

Here Q is the solid angle subtended by the dipole sheet at the point of
observation, as in Fig. 1-6. The solid angle subtended by a nonclosed
surface jumps discontinuously by 47 as the point of observation crosses
the surface. This means that in the ideal case of an infinitely thin dipole
charge layer the potential function will have a discontinuity of magnitude
|7]/€o, but it will have a continuous derivative at the dipole sheet.
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Observation
pomnt

¢ Q
Dipole sheet

Fig. 1-6. Potential due to dipole layer.

Lo | Limits of Vo 4
Charge layer

P »

Distance Distance

(a) (b)

Fic. 1-7. Behavior of the potential at a dipole layer, (a), and at a layer of
charge, (b).

On the other hand, = simple surface charge layer will not result in a
discontinuity in potential, but will produce a discontinuity in the normal
derivative of the potential, the magnitude of discontinuity being /¢,
where ¢ is the surface charge density of the layer. A comparison between
the two cases is shown in Fig. 1-7(a) and (b). Since surface charge layers
and dipole layers enable us to introduce arbitrary discontinuities in the
potential and its derivatives at a particular surface, we can make the
potential vanish outside a given volume by surrounding the volume with
a suitably chosen charge layer and dipole layer. This is a further explana-
tion of the significance of the surface terms in Eq. (1-38), which was de-
rived from Green’s theorem. These terms, when ¢ and V¢ are properly
evaluated on the surface in terms of = and g, are precisely those necessary
to cancel the field of those charges inside the surface S in the region outside
of S. This can be seen by writing Eq. (1-38) as

1 p dv /r-dS fd_@) B
¢_47reo(/ r T r3 T 7)) (1-62)

where 7 = €p¢ and o is € times the normal derivative of ¢.
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As an example of a combined surface charge and dipole layer that will
just cancel the field outside a given surface, yet leave the field inside the
surface unchanged, consider a point charge q located at the point R = 0,
and the surface B = a surrounding this charge. If we place a surface
charge density & = —gq/4ma® per unit area on the sphere R = a, it will
give rise to a potential:

q

¢:r - 4:71'600,, fOI' R < a,
= __9
¢, = Ire R for R > a.

If, in addition, a surface dipole layer of moment r = ¢R/4maR per unit
area is placed on the sphere, it will make a contribution

¢ =-—2—, R <a,

¢T:0; R>a.

The potential of the original charge ¢ is ¢g = g/4meoR for all R. The total
of all these potentials is

— - 1 _
¢-¢0+¢a+¢r——4ﬂ_eoR, for R < a,

¢ = 0, for R > a.

The electric field produced by a dipole layer of area S as shown in Fig.
1-8 can be derived as follows. Consider a change in the potential cor-

Subtracted
area

1‘[,¢

Fig. 1-8. Illustrating the derivation of the clectric field produced by a dipole
layer.
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responding to a displacement of the point of observation z, by a dis-

tance dx,
dp = —E - dx. (1-63)

The change in solid angle, dQ, subtended by the dipole layer at the field
point is the same whether the field point moves a distance dx or the layer
moves through —dx. The latter case is shown in the figure. Since in this
displacement an element dl of the boundary sweeps over an area dx X dl,
the total change in solid angle is

dQ

_ plaxxd)-r f@lf“ 9x (1-64)

r3

The change in potential corresponding to this change in solid angle is,

from Eq. (1-61), r

do = — Ireq dq. (1-65)

(The negative sign follows from the fact that the negative side of the
dipole layer is toward the observer at x,.) Equating the two expressions

for d¢, we obtain
—T (dl X r)-dx
—E . dx = 471_60‘?{ 3 . (1-66)

Since dx is an arbitrary displacement and this last expression holds for all
possible dx, it is permissible to write

T dl Xr T 1
E= 47€q 3 41reofd1 XV (;>. (1-67)

That the potential due to a dipole layer is double valued at the surface
is strictly true only in the limit in which the dipole layer has zero thick-
ness (see Fig. 1-7); for this reason the discontinuity does not actually have
physical reality. Nevertheless, the method of generating nonconservative
potentials by means of such discontinuities is a useful one, particularly in
the theory of magnetic fields due to currents, where the corresponding
potential does have a multivalued behavior completely analogous to the
properties of the surface dipole moment.

1-10 Volume distributions of dipole moment. The potential due to the
volume distribution of dipole moment is found by considering the dipole
moment in Eq. (1-42) as a volume density and integrating over the vol-
ume. If P is the dipole moment per unit volume,

1 AL )
¢——47TGO/P-V(;)dL. (1-68)
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This can be changed into a form that is physically more revealing by
means of Gauss’s divergence theorem and the relation

V'-(B>=1V'-P+P-V'(l>- (]___69)
r r 7
We obtain
- 1 !, E r /_1_ ', /]
¢ = 4:71'60[/V (r)dv rv P dv
1 P-dS v-P,,
~ 4me [/ r J[ " dv ] : (1-70)

This expression can be interpreted as follows. The first term, a surface
integral, is a potential equivalent to that of a surface charge density, while
the second term is a potential equivalent to that of a volume charge
density. The charge densities which have potentials equivalent to those
produced by the volume polarization of a region of space are

op = P,, pp = —V'-P. (1-71)*

Note that if P does not have discontinuities the volume charge pp =
—v’ . P is sufficient to describe the source; it can easily be proved that
the expression for op in Eq. (1-71) will result if V' - P becomes infinite
at a boundary.

The relations between these surface and volume charges and the polar-
ization can be derived from purely geometrical considerations. If, for ex-
ample, we have an inhomogeneous dipole moment per unit volume, pp
will represent the charge density that accumulates from incomplete can-
cellation of the ends of the individual dipoles distributed in the volume.
The quantity op, on the other hand, represents the charge density on the
surface produced by the lack of neighbors for the dipoles which lie with
their ends on the surface. It is evident that pp will vanish in a homo-
geneous medium; in fact, a sufficient condition for its vanishing is that the
dipole moment per unit volume have a zero divergence. In general, how-
ever, the potential due to the two forms of polarization charges is

. 1 agp as’ /pp dl":l. _
¢ = 4meq [/ r - r (1-72)

Note that the “equivalence relations” of Eq. (1-71), although derived
above by means of the electric field which the respective terms produce, are

* Since pp = —V + P is a field equation, the prime on V can be dropped
without ambiguity. The prime on the V is only necessary in integral expressions
which relate a field quantity to an integral over a source quantity.
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actually simple geometrical quantities. We can see this formally by con-
sidering the total dipole moment p of a distribution. According to the
“equivalence relations,” we should have

p= [Pd/ = [Eppds + [Eopds' = — [E(v' - P) @' + [E@- dS),
(1-73)

where £ is the vector whose components are z,. The ath component of p
can be integrated by parts from the identity

v (xlP) = 24V’ - P + P..
Therefore,

Pa = /Padv’ - —/x;v'-pdv'+[v'-(x:,p)dv'
- —/x;v'-pdv'+/xgp-d8f

Equation (1-73) is thus proved as a geometrical relationship without ref-
erence to any interaction.
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EXERCISES

1. If A, B, C, D are vectors, show that
(a) A-Bis a scalar,
(b) A X B is a pseudovector,
(¢) A - (B X C) is a pseudoscalar,
(d) (A X B)-(C X D) is a scalar.
2. Show that the mean value of the potential over a spherical surface is equal

to the potential at the center of the sphere, provided that no charge is contained
within the sphere.

3. From the results of Exercise 2, show that a charge cannot be held in equi-
librium in an electrostatic field. (This is Earnshaw’s theorem.)

4. Show that Green’s theorem, Eq. (1-37), follows from Gauss’s divergence
theorem.

5. We shall need the “one-dimensional” é-function defined by
fé(x——a)dx =1,

[ f(z) 8z — a) dz = f(a)

when z = aisin the interval of integration, and both integrals vanish otherwise.
Show by means of the Fourier integral theorem that

lim L cos kx dk = 27 é(x)
L—ow J—L

in the sense that both behave the same way as factors in an integrand.

6. Prove by considering the axial point on a disk that the potential undergoes
no sudden change from one side to the other of a charge layer, and that the same
statement holds for the normal derivative of the potential in the case of a dipole
layer.

7. Functions of the type ¢ = z, or indeed ¢ = x2 4 2y% — 322, satisfy
Laplace’s equation at all points of space. Does this mean that such potentials
have no sources? Discuss in detail the significance of such solutions, and their
bearing on the uniqueness proof for potentials.

8. If the electric field of a point charge g were proportional to gr ~2—°r, where
is a radial unit veetor and 6 << 1, (a) calculate V- E and V X E, for r  0;
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(b) and if two concentric spherical conducting shells of radii @ and b were con-
nected by a very thin wire, with ¢, on the outer shell, prove that a charge

— aa
00 = 5 {120 ok 20 — (a-+ ) Yog (a+ 1)+ (a — ) Iog (@ — DI} + 08
will reside on the inner shell. (Adapted from Jeans.)

9. Show that the static potential ¢(z, y, 2), correct to third order in a, is equal
to the mean of the potentials at the points

r+xavy,z, x,Yy £ az; T, Y, 2 + a.

10. For a finite spherically symmetric charge distribution the potential as
[* ]
calculated by ¢ = f E-dris

r 0 T/,
1 d’l‘” f ,2
r) = — —= = dr'.
¢( ) €0 /; 2 J, P

By dividing the distribution into thin shells, each of which contributes constant
potential at all points inside it, obtain an expression for ¢ that involves only
single integrals. Prove the equality of the two expressions.

11. Consider two coplanar electric dipoles with their centers a fixed distance
apart. Show that if the angles the dipoles make with the line joining their centers
are 0 and 0’ respectively, and if 6 is held fixed,

tan = —3 tan @’
for equilibrium.
12. The differential equations of the “lines of force” are

For a dipole of moment p directed along the z-axis and located at the origin, find
the equation f(z, y) = constant that gives the lines of force in the plane z = 0.

13. Calculate the quadrupole moment of two concentric coplanar ring charges
q and —gq, having radii a and b.

14. Two uniform line charges, each of length 2a, cross each other at the origin
in such a way that their ends are at the points (+a, 0, 0) and (0, £a, 0). Deter-
mine ¢ for points r > a, up to but not including terms in 7%,

15. Show that the potential of a symmetrical 2* pole generated by differentiat-
ing the point potential n times along successive directions making an angle 2w/n
with one another is given by

const.

¢(r, 0,¢) = gy P, (cos ) cos n(p — o).

16. Show that Eq. (1-58) changes sign if p1 and p2 are interchanged.



CHAPTER 2

BOUNDARY CONDITICNS AND RELATION OF MICROSCOPIC
TO MACROSCOPIC FIELDS

The dipole moments per unit volume considered in the foregoing chapter
are special examples of sources which give rise to electrostatic fields and
can therefore be treated as special types of charge densities in Poisson’s
equation. Since such volume distributions are produced in material media
by electric fields, the behavior of a medium in a field can be described in
terms of its polarization, i.e., its dipole moment per unit volume. It is
customary, in order to clarify the understanding of polarization, to sepa-
rate the total charge that produces an electrostatic field into two parts:
a true, free, movable, net charge p, and a bound, zero-net, polarization
charge pp. This division is to a certain extent arbitrary, in the sense that
the polarization charge pp simply represents separated charges which on
the scale of observation being considered.in a particular experiment are
essentially inaccessible, but which would be treated as free charges on a
smaller scale. If, for example, we place a piece of metal between the plates
of a capacitor, we can describe the resultant field between the plates either
in terms of the true charges produced on the metal or in terms of an
equivalent polarization of the piece of metal, depending on whether we
consider the charges individually measurable. If, instead of the metal,
we introduce a piece of dielectric between the capacitor plates, we are
forced to describe the phenomena by a polarization charge, rather than
by a true charge, since it is assumed in the theory that observation shall
not be made on an atomic scale. An atomic scale observation would be
necessary in order to “resolve” the volume polarization into individual
charges.

2-1 The displacement vector. It is seen that the distinction between
p and pp is an arbitrary one, but this arbitrariness will in no way disturb
the formalism used to describe the fields produced by polarization charges.
Since we have divided the sources of electric fields into these two types,
the Poisson source equation becomes

v2¢=—V-E=~<&1t-f£)' (2-1)

The symbol p now denotes only the true free charge at the point where
the divergence is taken. If pp is expressed in terms of the divergence of

28
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the polarization P, as given by Eq. (1-71), we obtain from Eq. (2-1)

v-(E+2)=ﬁ- (2-2)

€o

It 1s thus convenient to define an electric displacement vector D (meas-
ured in coulombs per square meter in the mks system) by

D = ¢E -+ P. (2-3)

The source equations then become

vV-D=p 2-9)
and
V.E =", (2-5)
€o

with the total charge density p, written for the sum of the true and polar-
ization charge densities. The corresponding integral relations, secured
by means of Gauss’s divergence theorem on integration over the volume
containing all the charges, are

/ D.dS = g, (2-6)
[E-dqu—‘, (2-7)
€o

where g; is the total charge, the sum of ¢ (the “true” charge) and the in-
tegral of —(V - P) over the volume.

It is clear that D represents a partial field in the sense that its sources
are the true charges. Note that the relation (2-3) between D and E is
basically an additive one, the difference between D and ¢,E being the
polarization P. Note also that the polarization, although defined in a
purely geometrical fashion as the dipole moment per unit volume, has
the properties of an electric field. The polarization field P is that field
whose flux arises only from the polarization charges pp. These remarks
describe P and D in terms of their flux and thus their divergence, although
V X P and V X D need not be zero. In fact, V X D has a circulation
density ¢ = V X P; thus mathematically D can be derived from P by
the methods given in Chapter 1, Section 1, since both its circulation density
and source density are given.

The solution of an actual field problem involving polarized bodies will
depend .on the manner in which the polarization depends on the external
field. In most cases the polarization is proportional to the field, and can
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be expressed by an equation of the type
P = ¢XE, (2-8)

where X is called the electric susceptibility. Such a description excludes
the consideration of electrets (materials possessing a permanent dipole
moment), but electrets are not ordinarily of importance. In case we do
have a simple medium whose polarization depends linearly on the im-
posed electric field as expressed by Eq. (2-8), then all three vectors D,
E, and P will be related by constants of proportionality:

D= GoE + P = 60(1 -+ X)E (2—9)

We may define the specific inductive capacity (often called the dielectric
constant) by

Kk =1+ X, (2-10)
so that

D = ke E (2-11)
and

P = ¢y(x — 1)E. (2-12)

As it stands, Eq. (2-8) presupposes that the medium polarizes iso-
tropically, or that the polarization properties of the medium do not de-
pend on the direction of the polarization. This is not the general case
and, in fact, the scalar proportionality is valid only for liquids, gases,
amorphous solids, and cubic crystals. In crystals of symmetry lower than
cubic the relation between each of the components of the polarization
vector and of the electric field vector is still linear but the constants of
proportionality in the various directions may be different. This means
that the relation between the components of the polarization vector and
the components of the electric field vector are given by a tensor,

P, = €pXusEjp, (2-13)

and P is no longer in the same direction as E. It will be shown in Chapter 6
by energy considerations that X.g is symmetric, 1.e., Xo8 = Xgo. It is there-
fore possible to express X,s in terms of principal coordinates by a set of
only three constants, and there are at least three directions in which P
and E are parallel.

The case where E and P are not proportional and there is no linear
relation between them will not be treated here, but the analogous case
will be discussed in connection with magnetic media where nonlinearity is
of more practical importance. It should be pointed out, however, that
the relation we have here assumed between P and E is only a special
simplification, and not a fundamental equation of the theory.
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2-2 Boundary conditions. Maxwell’s field equations, to be discussed
Jater, are a set of equations whose sources are divided into accessible and
inaccessible charges. To obtain a solution of Maxwell’s equations the in-
accessible charges must be related to the accessible charges, or to the
fields produced by the accessible charges, by additional equations. The
relations that evaluate the inaccessible charge sources in terms of the ex-
ternal fields which produce them are called the constitutive equations.
Equation (2-8) is an example of such an equation. The constitutive
equations must, of course, depend on the properties of the material in
which the inaccessible charges arise. While Eqs. (2-8) to (2-13) are not
entirely general, they depend only on linearity and do not imply homo-
geneity. The susceptibility and specific inductive capacity may therefore
be arbitrary functions of the coordinates. A case of much interest is one
where the specific inductive capacity varies discontinuously, as at the
boundary between two dielectrics.

Fic. 2-1. Volume considered for determining the boundary conditions on the
normal component of D.

To determine the behavior of the fields at a boundary, let us first im-
agine a small volume, as in Fig. 2-1, whose dimension normal to the
interface, h, is smaller than its other dimensions by an order of magni-
tude, to be placed so that one of its large surfaces AA lies in medium 1,
the other in medium 2, and both are parallel to the interface. This small
volume can be used to derive the behavior of the normal components of
the fields.

Let us take the surface integral of D over this small volume.

/ D-dS = q. (2-6)

In the limit as the dimension h approaches zero, ¢ approaches o AA,
where o is the true surface charge density on the interface. The contri-
bution of the sides of the volume normal to the surface vanishes, so that
Eq. (2-6) becomes

n-(D; — D)) = o, (2-14)
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- -

Region 1

A]

Fig. 2-2. Loop considered in determining the boundary conditions on the
tangential components of E.

where n = dS/dS is the unit vector normal to AA, the top of the cylinder
of volume A AA. On the assumption that Eq. (2-11) is valid, we obtain

g
n- (K2E2 - K1E1) = —GE’

(2-15)
o
ne (KeVo — K1 VPy) = — —-
€o
We have assumed that AA is small enough so that the fields are essen-
tially uniform over this area.
Equation (2-15) can be written in the more convenient form

9¢2 L N 15/
Ky - Ky 5= = e’ (2-15")

— g 2
where 9/0n denotes the derivative taken along the normal to the boundary.
If a linear medium [i.e., the validity of Eq. (2-8)] is not assumed, but if
the polarization P is a given function of position, it can be shown that the
boundary condition corresponding to Eq. (2-15) is

?_@2__3¢1____(‘7+5Pn),

i S R
on an €p (2 15 )

where 6P, is the discontinuity of the component of P along the normal
taken as positive from medium 1 to medium 2.

The behavior of the tangential components of the fields as they cross
the interface can be determined from the consideration of a small loop,
as in I'ig. 2-2) its major extent lying parallel to the surface, one side in
medium 1 and the other in medium 2. From Eq. (1-34) we have for the
closed line integral of the electric field

7§E .dl = 0. (1-34)
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If we apply this to the path indicated in the figure we obtain
E; -dl — E, - dl 4 terms of order E - dh = 0. (2-16)

Actually, Eq. (2-16) remains valid even if Eq. (1-34) is not assumed,
so long as V X E is finite on the interface. In that case

E;-dl — E; - dl 4 terms of order E - dh = (V X E) - (dh X dl). (2-16")

If we let dh — O we obtain
E;2 = Eq, (2-17)

where E; is the electric field component in the plane of the interface.
In terms of the potential,

—n X (E; — E;) = n X (V¢ — Vo) = 0, (2-18)

where n is the unit normal to the interface of Fig. 2-2. We have assumed
that the loop is sufficiently short that the fields are essentially constant
over its length. Equation (2-18) can be integrated along the interface
to give

¢1 = ¢2 + constant; (2-19)

it 1s usually convenient to omit the constant. Equation (2-15"), or (2-15"")
if applicable, together with Eq. (2-19), form the sufficient set of boundary
conditions across any interface for a static potential problem.

2-3 The electric field in a material medium. We first defined the electro-
static field produced by free charges in a vacuum, and then we introduced
material media containing charges that are inaccessible to measurement.
The behavior of these media has been described in terms of their dipole
moment per unit volume. Mathematically the fields were defined by
Eqgs. (2-4), (2-5), and the connecting equation (2-3). Certain difficulties
arise in the definition of the electric field within material media if one
attempts to maintain a strictly phenomenological point of view. An
operational definition of the field might be made by any of the following
three methods, which will not necessarily yield answers in agreement
with each other:

(A) We may define the field on an atomic electron scale, where the
question of the polarizability of material media would presumably not
arise. Then for our macroscopic definition of the field we would take
the space-time average of these atomic fields. A very fast electron would
experience such an average field.
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Origin

Fic. 2-3. Coordinates for averaging atomic fields. £« = (&1, ).

(B) We might consider a hole cut in the dielectric material and define
the field as that measured in this hole in terms of a unit charge such as
was used in the vacuum definition. This cavity definition of the field will
make the field strength depend on the geometry of the cavity and on its
orientation with respect to the direction of the field in the medium. This
will lead to a unique definition only if the shape and orientation of the
cavity are standardized in an arbitrary way.

(C) We may define the field as that acting on an individual molecule
of the dielectric.

Let us examine these methods separately.

(A) Space-time average definition. Consider a function f(z, y, 2;t) de-
fined in a certain region of space during a certain time interval, as indi-
cated in Fig. 2-3. The space-time average of f(z, y, z;t) over a time
interval 2T and a spherical region of space of radius a is given by

f(xy y,z,t) ==

=yl o 0
2Tima’® /_T fle+ 9, G+, +0; + 0)]

40?455
X dEdnd¢ de. (2-20)

Performing this integral is a linear operation and may therefore be com-
muted with linear differential operators, as, for example,

Vi= V] (2-21)
On an atomic scale an equation corresponding to Eq. (2-5) holds:

v.g="2a, (2-22)
€o

where & is the atomic electric field and p, is the charge density in the
atomic distribution. On taking the space-time average of p,, we obtain

V. e=V -g="2_ P (2-23)

€o

g
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_ Fic. 2-4. Cavities for defining fields in a dielectric: slot .1 with short dimen-
sion parallel to the field; slot B with long dimension parallel to the field; and
sphere C.

and from Egs. (2-21) and (2-5),
v-8=V-E. (2-24)

Hence the macroscopic field E is actually the space-time average of the
atomic field &, even in the presence of dielectrics.

(B) Cavity definitions. Consider the three shapes of cavities shown in
Iig. 2-4. There are no true charges on the boundaries. From the boundary
condition of Eq. (2-15) the field measured in slot A, whose major extent
is oriented normal to the field, is kE,,, where E,, is the field in the medium.
(This is rigorously true only in the limit of a very flat “pill box” cavity.)
The field in slot B, whose major extent is oriented parallel to the field,
is just E,,, by Eq. (2-18), if the width of the slot is sufficiently small.
The field measured in the spherical cavity C can be shown to be

3KkE ., E, + _13_ 1

E=g 717 € 2k + 1)

(2-25)
by methods to be discussed in Chapter 5 for the solution of boundary
value problems. It is introduced here only to indicate how cavity defini-

tions depend on the geometry of the cavity. For large values of « Eq.
(2-25) reduces to

E — 3E,. (2-26)

The three types of fields existing in these cavities are shown graphically
in Fig. 2-5.

The measured field in any cavity can in principle be related to the field
in the medium and thus used to define the magnitude of that field, pro-
vided that the gcometry of the cavity and the specific inductive capacity
of the medium are known.

(C) Molecular fields. A particular molecule is located at a nonrandom
position in a solid, and hence the field acting on it is not the space-time
average discussed above. We now approximate the field acting on a mole-
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by slot A slot B Sphere ('
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Fic. 2-5. Field profile measured by the cavity technique on a horizontal line
passing through the centers of Fig. 2-4 4, B, and C.

cule which itself is one of the molecules of a polarized medium. Consider a
dielectric placed between the plates of a parallel plate capacitor, as shown
in Fig. 2-6, the dielectric and capacitor being sufficiently large in the
directions parallel to the plates so that end effects may be neglected.
Consider one of the molecules constituting this dielectric. Let us draw
a sphere of radius a about this particular molecule, intended to respresent
schematically the boundary between the microscopic and the macroscopic
range of phenomena concerning the molecule. The molecule is thus in-
fluenced by the fields arising from the following charges:
(1) The charges on the surfaces of the capacitor plates.
(2) The surface charge on the dielectric facing the capacitor plates.
(3) The surface charge on the interior of the spherical boundary of
radius a.
(4) The charges of the individual molecules, other than the molecule
under consideration, contained within the sphere of radius a.

The fields due to these sources may be computed separately:

(1) The charge on the capacitor plates produces a field at the molecule
in question equal to

D P
— =E+ - (2-27)
€ €p

~— Capacitor plates

The molecule s

B B S
- Direction of
“positive fields

|

o+ o+ o+ A+t

Fic. 2-6. Indicating the contributions of a dielectric to the field on one of its
molecules.
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(2) The polarization charge on the surface of the dielectric facing the
capacitor plates, dp = Py, produces a field at the molecule given by
P
— —- (2-28)
€o
(3) The polarization charge present on the inside of the sphere produces
q field that may be calculated as follows. The magnitude of the electric
field at the center of the cavity, Ep, due to the polarization on the surface
of the cavity, is given by

Ep

1 / opcos 0dS , (2-20)

- 47r€0 a?

where 0 is the angle between P and the radius vector from the molecule to
the surface element dS. The differential element of surface charge between
6 and 0 + df is

ocp dS = |P|2ma’ sin 6 cos 8 db. (2-30)
Equation (2-29) thus becomes
|PI27T(12 '/r . : 9
Ep = drega® Jo sin 6 cos” 6 d#, (2-31)

and on integrating, we obtain Ep = |P|/3¢, or

P
Ep = 3¢y (2-32)
Note that Ep is not the solution of the boundary value problem of a
spherical cavity within a dielectric, as was the field given by Eq. (2-25),
but is the solution of the problem of a spherical cavity within a dielectric
if the polarization is considered to be unaffected by the presence of the
cavity.
(4) The field due to the individual molecules within the sphere must be
obtained by summing over the fields due to the dipoles within the sphere.

We have the potential of an individual dipole from Chapter 1:
1

_ p- T _
¢ = 4mey 13 (1-42)

The field at a distance r from a dipole is

E— _ve— —L [2 _ _3_(P_°£)_f]. (2-33)

4meg | 73 rsd

Summing over all the dipoles within the sphere is equivalent to taking
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the spatial average of the z-component of the field:

p:  3(pax” + pyry + pax2)
IR ] L T

r3 rs

Since according to our assumption the dielectric is isotropic, the z-, y-,
and z-directions are equivalent, and

22 = y? = 2% = r2/3, xy = yz = zx = 0. (2-35)

Hence the field due to the dipoles within the sphere vanishes.

On adding the partial fields of expressions (2-27), (2-28), (2-32), and
the zero field of Eq. (2-34), we have for the total field acting on one
molecule

Eeff-—E+“——~“—+360 +:.,;E; (2-36)
This expression, derived for isotropic substances, is also valid for a lattice
point within a cubic crystal, but is not valid for crystals of lower sym-
metry. Note that we have considered only dipole-dipole interactions be-
tween neighbors. Clearly, this will be inaccurate for substances having
large oriented molecular groups.

The difference between Eq. (2-36) and method (A) is that here we con-
sider what happens to an actual molecule of the medium, rather than take
an average of the field at a random point. The physical significance of
the space-time average of all the atomic fields would be the average field
on a fast moving charge traversing the medium.

2-4 Polarizability. The field definition (C) is useful for describing the
large-scale behavior of a dielectric in terms of the constants of its mole-
cules. In order that such a description be made, the specific inductive
capacity must be associated with the polarizability of a single molecule.
This connection may be made by means of Eq. (2-36), which gives the
field and thus the force acting on a single molecule within the body of a
dielectric in terms of the external field. The quantity «, called the polar-
izability, is defined by the equation

P = a€oEess, (2-37)

where p is the dipole moment induced in a single molecule. If N is the
number of molecules per unit volume, the total polarization is

P = Np = OtNEoEeff
(2-38)
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where p,, is the density and M the molecular weight of the material, and
N, is Avogadro’s number, so that N = Nopn/M. Therefore P may be
found if « is given for a particular material. Furthermore, by combining
Eq. (2-38) with Egs. (2-12) and (2-36), we may eliminate the fields and
obtain the relation sought:

K—l_aN__Nopma_
k+.2~ 3  3M

(2-39)

This formula, known as the Clausius-Mossotti relation, gives the correct
dependence of the specific inductive capacity on density for a wide class
of solids and liquids. For dilute gases, where « is not very different from
unity, Eq. (2-39) becomes

K—1= Na=NPnt, (2-40)
just as would be expected for an approximation corresponding to the neg-
lect of the interaction between each molecule and its neighbors. The
molecular polarizability in general arises from two basic physical causes:
(1) the lengthening of the bonds between atoms, and (2) the preferred
orientation of molecules along the direction of the field as opposed to the
random orientations brought about by thermal motions.

It is this second effect which is responsible for the temperature depend-
ence of the specific inductive capacity. In statistical mechanics it is
shown that under conditions of thermal equilibrium the probability that
any one molecule has energy U is proportional to e~ UIkT  where k is
Boltzmann’s constant and 7 is the absolute temperature. If we have a
molecule of intrinsic moment pg in a field E, then according to Section 1-8,

U= —po-E
(2-41)
= —pokl cos 0,

which depends on the orientation of the molecule with respect to the field.
The contribution of each molecule to the total dipole moment would be
Do cos 0, to be summed over all molecules. If there are N molecules per
unit volume, the effective polarization would be given by

[Npo cos 9 °°* % dQ

fex cos 8 dQ

P ) (2-42)

where for convenience we have written * = poE/kT. The denominator is
easily integrated, and apart from the constant factor Npo the numerator
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is just the partial derivative of the denominator with respect to x. The
final evaluation gives

P = Npog <coth x — %) ) (2-43)
which for small z becomes
N t NpiE
P >~ Npo 3 T (243"

This effect is to be added to the polarizability due to distortion of the
molecules by the field, which we may call ay. Note that the distortion
polarizability ao would add a term

"‘aoéongf/z

to the energy expression (2—41) which does not depend on the angular and
position coordinates of the molecule and thus does not result in a tem-
perature-dependent polarization. Equation (2-40) thus becomes

1= Nps .
K 1= NO[O -+ 3€0kT ’ (2—4:4:)
or, if Eq. (2-40) is not applicable, Eq. (2-39) becomes
k— 1 Nopm p(z) )
ST 2= M (“0 T 3eokT (2-45)

Hence examination of the density and temperature dependence of the
measured value of k can often be used to isolate ag and pj.
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ExXERCISES

1. Consider a simple cubic lattice of point dipoles, all of equal moment and
like orientation. Show that the field at the position of one dipole due to all others
in a sphere of arbitrary radius about this point is zero.

2. A long very thin rod of dielectric constant « is oriented parallel to a uniform
external field E. What are E and D within the rod? What are the fields in a
very thin disk of dielectric oriented perpendicular to the field?

3. Show that for an electret (fixed P) the integral fE - D dv over the entire
field volume vanishes.

4. Consider an electron of charge —e moving in a circular orbit of radius ag
about a charge 4-¢ in a field directed at right angles to the plane of the orbit.
Show that the polarizability o is approximately 4waj.



CHAPTER 3

GENERAL METHODS FOR THE SOLUTION
OF POTENTIAL PROBLEMS

We have seen that, in principle, potential problems are solvable if all
charge distributions are known, and we shall prove the uniqueness of any
solution which reduces to given values of the potentials or their normal
derivatives on the boundary of a region. Actually only a few of the most
idealized problems can be solved with any degree of simplicity. For prac-
tical applications experimental and numerical methods of mapping fields
have been devised, as well as graphical and semigraphical procedures in-
volving some calculations. Analytic methods rarely lead to solutions in
closed form, while infinite series must converge fairly rapidly to be useful.
Nevertheless, analytic solutions of geometrical boundary configurations
approximating the actual situation furnish a valuable check even when
experimental mapping is finally necessary, and graphical methods depend
on prior knowledge of the general behavior of the potential. The solution
of problems with relatively simple boundaries and charge distributions is
therefore of value, even for more complicated engineering applications.

Unfortunately, no general methods of solution are available which will
apply to all types of geometrically simple problems, and therefore each in-
dividual case demands, to some extent, special treatment. Certain methods
apply to general classes of problems, however, and can be discussed as in-
dividually characteristic of these classes.

3~1 Uniqueness theorem. This theorem states that if within a given
boundary a solution of a potential problem is found which reduces to the
given potential distribution on that boundary, or to the given normal
derivative of the potential on that boundary, then this solution is the
only correct solution of the potential equations within the boundary.
The theorem provides justification for attempting any method of solution
so long as the resulting solution can be shown to obey Laplace’s equation
in a charge-free region. No matter how the solution is obtained, if it sat-
isfies these conditions the problem is considered solved.

The proof of the theorem is very similar to that indicated (Section 1-1)
for the unique definition of vector fields from their source and circulation
densities, except that here the integration does not extend to infinity. If
we put ¢V¢ into Gauss’s divergence theorem as the vector field, we obtain

[¢ve-ds = [v-(eve)dv = [1ve)? + ¢¥P9ldn.  (3-1)

42
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The last term vanishes, from Laplace's equation, if we choose the surface
of integration in such a way as to exclude all charged regions from the
interior of the region of integration. It may be necessary to employ sur-
faces internal to the outer boundary in order to exclude the charges from v.

Let us suppose that two different potentials, ¢; and ¢,, are solutions of
a given potential problem. Both ¢; and ¢, are to satisfy the boundary
condition, and hence on the boundary either ¢; = ¢ or (Vé1)p = (Va)n.
(The component of V¢ normal to a surface is often called the “normal
derivative” and may be designated by d¢/dn.) If we substitute the differ-
ence ¢; — ¢ for ¢ in Eq. (3-1), we have

[@1— 62V (61 — ¢2) - dS = [V — 2P do. (3-2)

Either boundary condition (equality of the potentials or their normal
derivatives) assures the vanishing of the left side of Eq. (3-2). Since the
integrand of the right side of Eq. (3-2) is positive definite, it must be zero
in order for the integral to vanish; hence throughout the volume »

V¢, = Vo, ¢1 = ¢2 + constant. (3-3)

Thus the two potentials that were assumed to be different yet satisfying
the same boundary condition can differ at most by an additive constant
which makes no contribution to the gradient; therefore these potentials
will give the same electric field distributions.

If linear dielectrics are involved, Eq. (3-1) may be replaced by

[oxve-ds = [((V$)® + 6V - (V)] dv. (3-1')
Laplace’s equation for dielectrics is

V- (kVe) = 0,

and hence the proof for uniqueness remains valid. If nonlinear dielectrics
are involved, the region may be divided into subregions having uniform
polarization densities, and for which the theorem holds separately.

3-2 Green’s reciprocation theorem. A large number of theorems that
are useful for the solution of electrostatic problems serve to transform the
solution of a known, presumably simpler, problem into the solution of
another problem whose solution is desired. Of such theorems one of the
most useful is Green’s reciprocity theorem. Let us consider a set of n
point charges ¢;, at positions where the potentials due to the other charges
are given by a set of numbers ¢;. The potential at the point j is related
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to the charges at the other points (designated by < for purposes of summa-
tion) by

1 q,
¢J 47T€0 —~ 7.” (3 4)

The prime on the summation sign means that the term ¢ = j is to be
omitted from the summation. If, on the other hand, a different set of
charges ¢; is placed at the same points, giving rise to the corresponding
potentials ¢, a similar relation holds:

L1 g |

Let us now multiply Eq. (3-4) by ¢; and Eq. (3-5) by ¢;, then sum each
expression over the index j:

n /
r Qiqlf 1
Z &= >
= e T 4me
(3-6)
q5q;
Pig; = Z Z oy ! 47re
i=1 j=1i=1 'Y 0

Since 7z and j are summation indices, we may interchange them in one
product of the ¢’s; thus

D bt = D i, (3-7)
j=1 —

which is the desired theorem.

This theorem can be generalized from a set of point charges to a set of
n conductors of potentials ¢; carrying charges g;: the generalization fol-
lows if we combine the points of equal ¢; in Eq. (3-7) into a single term.
Equation (3-7) thus applies directly to such a system of conductors.
If all but two conductors ¢ and 7 are grounded, Eq. (3-7) implies that the
potential to which the uncharged conductor 7 is raised by putting a charge
g on conductor 7 is equal to the potential of j, when uncharged, produced
by a charge ¢ on 7. An application of Eq. (3-7) to the solution of a poten-
tial problem is indicated at the close of Section 3-3.

3-3 Solution by Green’s function. A great variety of solutions of po-
tential problems can be generated from what is known as a Green’s func-
tion. The Green’s function for a particular geometrical arrangement is
the solution of the potential problem for this given geometrical arrange-
ment of grounded conducting boundaries when the only charge present is
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a unit point charge at point z.. It may be shown with the aid of Green’s
reciprocity theorem that the Green’s function for a particular geometry
is a symmetrical function of the coordinates of a unit charge located at
the point z. and the coordinates of the point of observation z,.

Two general types of problems can be solved by the use of Green’s
function. One type is that in which the potential distribution ¢, over a
certain boundary is given, and the other is one in which the charge dis-
tribution is given in a region within a conducting boundary. The deriva-
tion of the solution of both these problems can be given together by means
of Green’s theorem,

[@V0 — v’ o = [(6¥¢ —¢¥9)-dS,  (1-37)

where ¢ and ¢ are arbitrary functions of position which are required to
be nonsingular throughout the volume ». Let ¢ be the desired solution
of a particular potential problem and let ¢ = G be the Green’s function
for the geometry of the problem, i.e., the solution of the problem of a unit
point charge located at r = 0 with the surface S grounded. Then G will
be of the form

a— 1L

T 4Tegr

+ X, (3-8)

where X represents the potential due to the induced charge on S. Here X
is harmonic in v, i.e., it is a solution of Laplace’s equation. The distance
r is a symmetric function of coordinates z. and z., and the volume and
surface integrals are to be carried out over z,. Therefore, G has a singu-
larity only at r = 0, which we may handle by means of the é-function.
On substituting Eq. (3-8) into Green’s theorem, we have

f (GV3¢ — ¢ViQ) dv = f [GV% + 9——‘1@] dv

€o

- f(qu, — ¢VG@) - dS. (3-9)

Also, by definition, G = 0 on S. Hence, on collecting the nonvanishing
terms, we find

b= —€ ([Gv2¢ dv +[¢8VG- dS) (3-10)

for the value of ¢ at z..

Let us now consider the two cases mentioned earlier:

(1) The surface surrounding the point z. is grounded, making ¢, = 0,
and V2¢ = —p/€, due to the charge distribution p throughout v. Equa-
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tion (3~10) then reduces to
$(rh) = —€ / Vi dy = [ Gp dv. (3-11)

This expression is fairly obvious, since it merely represents the principle of
superposition applied to the density of point sources within the volume v,
with each unit source of which the density p consists contributing its share
to the potential ¢(2.) by the superposition indicated by the integral.

(2) Let there be no sources of ¢ throughout the volume v, so that Vi =
0, but let us assume that ¢ is a given function ¢, on the surface S. In
this case, Eq. (3—10) reduces to

o(zh) = —e€o / 6, VG - dS. (3-12)

Equation (3-12) gives the potential within a given region enclosed by a
boundary where different parts of the boundary are raised to a given set of
potentials. This solution expresses the potential within this boundary in
terms of the surface integral of the potential on the boundary multiplied
by the normal derivative of the Green’s function. Physically, the normal
derivative of the Green’s function represents the surface charge density
that would be induced on the boundary by a unit charge at the point x,
if the boundary were a grounded conductor. Equation (3-12) thus gives
the solution of the potential problem corresponding to a given potential
on the boundary in terms of the integral of this potential multiplied by
the charge induced on the grounded boundary by a unit charge placed at
the field point. If we wish to express Eq. (3-12) explicitly in terms of the
charge o, induced on the grounded boundary we note from Eq. (2-15)
that
as O1s

vg.a_s_zjx__go“.

Thus Eq. (3-12) becomes simply
o) = — [o.01, dS. (3-13)

Theorem (3-13) may also be derived directly by the use of Green’s
reciprocation theorem:

(1) Let the surface S be grounded and let a charge go be placed on a
small conductor surrounding the point z.. The charge induced by go on
the jth region of the boundary S will be designated by ¢1;.

(2) Let the charge at x. be removed, but let the surface S be divided
into sections, each at a constant potential, the potential of the jth section
of S being ¢;;. In this case ¢(za) represents the potential at Tae
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If we relate these two cases by means of Eq. (3-7), we obtain

qop(za) + Z q1j9js = 0 -+ 0.

Jj=1

The two zeros on the right arise from the fact that the potential is zero
over the entire boundary in case (1), and that the charge at z/ is zero in
case (2). Remembering that g¢ is unity in our consideration, we have

$(zh) = — Y bisd1- (3-14)
j=1

This expression is identical with Eq. (3-13), but it has been obtained
directly in terms of the induced charge in a way that is more obvious
physically.

In the consideration of more specific problems, we shall derive Green’s
functions for various conducting boundaries. The solutions for the prob-
lems, both for grounded conductors enclosing charge distributions and for
charge-free regions surrounded by conductors whose potentials are given,
can then be written down immediately.

3—4 Solution by inversion. There are various kinds of transformations
by which a set of solutions of one potential problem can be transformed
into the solutions of another problem. The process of inversion is a special
case, important because it is valid in three dimensions as well as in two
dimensions. In two dimensions classes of such transformations more gen-
eral than inversion can be found.

One of the simplest and most useful methods by which the solution of
a problem can often be transformed into the solution of a simpler problem
1s the inversion in a sphere, as shown in Fig. 3-1. It can be shown by direct

a = radius

F1g. 3-1. Solution by inversion.
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differentiation that if ¢, = é(r, 6, ¢) is a solution of Laplace’s equation,
then

2
W', 0,0) = 5 6 (5:,— 6, sO) (3-15)

is also a solution of Laplace’s equation. In relation to a sphere of radius
a this transformation of the point r into the point »/, by the relation
rm’ = a2, maps the point p(r, 8, ¢) into its inversion point p’(a®/r, 8, ¢),
moving the point along the radius vector from a position inside the sphere
to a point outside, or vice versa. Let a charge ¢ be placed at distance [
and a charge ¢’ at distance I’ from the center such that I’ = a® The
relations 7’ = «? and ' = a2 imply that r/I’ = [/r’, and therefore the
triangles with sides rld and »'l'd’ are similar. Thus we have r/l' = I/7' =
d/d’. The potential at p before inversion is ¢, = g/4meod and the poten-
tial at p’ after inversion is ¢,” = ¢'/4meod’, so that

~

/

'

¢

b _gd_d L
2

=7

q
q

|

(3-16)

~

,d_ q
" q
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To formulate a law for the inversion of charges, we make use of the fact
that zero potential surfaces must transform into zero potential surfaces.
We can make the potential of the inversion sphere zero by taking two
charges initially, q1 = ¢ at [, and ¢g11 = —qa/l at a distance I’ from the
center such that I/ = a®. Now the inversion sphere at zero potential
under the influence of the two charges is to remain so after inversion.
This is assured if the two charges change places thus:

g1 = ¢ at | becomes ¢f = ag/l at a®/l,
qi1 = —qa/l at a®/] becomes ¢i1 = —q at L.

In either case the transformed charge is the original charge multiplied by
the inversion radius a over the original distance of the charge from the

center of the sphere,
' ll ll
%2%25:\[{' (3-17)

It seems more convenient for a charge to retain its original sign and change
only its magnitude when it is inverted, although this is not necessary if all
charges undergoing inversion are treated in the same way. We now se-
cure, by substituting Eq. (3-17) into Eq. (3-16), the rule for the inversion
of potentials,

bp /b = a/T" = 1/, (3-18)
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in agreement with
a
‘;b;) = ;‘7 d)(?‘, 6, ‘P);

which corresponds to Eq. (3-15). The transformation equations for such
quantities as volume or surface charge densities can be obtained by
multiplying the charge transformation Eq. (3-17) by the transformation of
the appropriate geometrical quantities.

In an inversion transformation a point charge will often appear at the
center of inversion in the transformed geometry. This point charge arises
from the fact that the net charge in the original geometry had electric
field lines that terminated on equal and opposite charges located at in-
finity and, in the inversion, infinity is brought in to the origin.

The main utility of the inversion transformation is that it rectifies
spherical boundaries if the center of inversion is taken on the spherical
boundary. Two freely charged intersecting spheres may be inverted into
two intersecting planes, and the plane boundary problem is usually easily
soluble by the method of images.

3-5 Solution by electrical images. If we have two equal and opposite
point charges, the zero potential surface is the plane of points equally
distant from the two charges. The zero potential plane could be replaced
by a plane grounded conductor, and the potential and field would remain

+q

Conducting sheet

Actual configuration Potential in I is equivalent
to that of image system shown.

() )

F1a. 3-2. Point charge and conducting plane. (a) represents the physical
system; (b) represents the system of images which would leave the conducting
sheet at zero potential and therefore produce the same field distribution in I
as the actual physical system.
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>0
S—>0
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77

Actual configuration.
(Lines of D shown.)

(a)

Potential in II

is equivalent to

that of charge
shown.

N

P+————Q ——|—— Q

(K — 1)
« + 1
Potential in 1 is equivalent
to that of charges shown.

(b)

-9

Fig. 3-3. Point charge and “dielectric half-space.” (a) represents the actual
physical system of a charge +¢ at a distance a from a dielectric half-space of
specific inductive capacity . (b) is a system of images representing the con-
figuration: the left-hand side of the distribution (b) is a system of charges which
gives the correct field distribution in region I; the right-hand part gives the
correct field distribution in region II.

5 1 +4q - ¢t¢

Actual configuration Potential in 1 is equivalent

to that of charges shown.
(b)

F1c. 3-4. Point charge and grounded sphere. (a) represents the actual physi-
cal configuration. (b) represents the system of images which gives the correct
distribution in region I. The potential in region II is zero.

(a)
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-+ T"l"q - ¢+¢q

+q(a/d)

Actual configuration Potential in I is equivalent
to that of charges shown.

(2) (b)

Fic. 3-5. Point charge and uncharged isolated conducting sphere. (a) repre-
sents the actual physical system. (b) represents the system of images which
gives the correct potential distribution in region I. The field, but not the poten-
tial, in region II is zero.

unchanged. Thus the solution for a point charge and grounded plane is
just that of two point charges throughout region I (see Iig. 3-2) in which
the field exists. The fictional charge —gq is called the “image” of ¢, by
analogy with reflection in a mirror.

In general, the potentials of the charges induced in infinite plane and
spherical conductors and on a plane dielectric boundary can be shown to
be equivalent to the potential of a suitable image charge or charges.
Typical cases are indicated in Figs. 3-2 through 3-5. Detailed justifica-
tion of these results is left to the problems.

The method of images leads to geometrically simple expressions for the
Green’s function involving plane or spherical boundaries. Let us use the
theorem of Eq. (3-13) to solve the problem of determining the potential
at an arbitrary point p above a plane on which a potential function ¢s
is given (Fig. 3-6). This figure shows both the physical system described
and the “reciprocal” (Green’s function) system in which a unit charge is
placed at p and S is grounded. The boundary problem in this reciprocal
system is solved by images.

The induced charge density o, in the reciprocal system is given by
01, = €L, where I, is the electric field at the conductor. On the other
hand, E, (which is normal to the conductor) can be obtained by applying
Gauss’s theorem, Eq. (1-26’), to the flux passing through a box surround-
ing the surface element dS, as indicated by dotted lines in Fig. 3-6. It
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Pe
¢p
¢S ’/S
Physical system
patl
dQ dQ
BadS = — g+ | = e
-
dQ
En
- dS ¢ =0
_ i) ) )
dQ
-

“Reciprocal”’ system
-1

Fic. 3-6. Determination of potential due to plane with arbitrary potential
distribution.

is readily seen from the figure that the flux through the upper surface of
the box due to both charge and image is

g1 dS = €E, dS = —dQ/2, (3-19)
where dQ is the element of solid angle subtended by dS at p. Hence from
Eq. (3-13) we obtain the simple expression,

1
¢p = o j; ¢s d. (3-20)
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In general, if the Green’s function of a system can be obtained by the
method of images, then the problem in which the system boundaries are
given an arbitrary potential distribution reduces to a simple sum or integral
over solid angles.

3-6 Solution of Laplace’s equation by the separation of variables. Ex-
cept within a distribution of charge, the fundamental problem of potential
theory is to find a solution of Laplace’s equation which satisfies certain
conditions on the boundaries of the region under consideration. If these
boundaries correspond to coordinate surfaces in a system of orthogonal
coordinates, the solution by separation of variables is often much more
convenient than the general Green’s function method. For one thing, it
is very easy to state the boundary conditions in the appropriate system
of coordinates, whether the condition be continuity of ¢ or its derivative
or the assignment of some definite value of ¢ or d¢/dn, when each state-
ment refers to a constant value of a particular coordinate. This would
be true of any system of coordinates, but in certain systems we can go
further and write the solution as a product of functions of the coordinates
separately, so that the boundary conditions can be applied to the separate
single-variable factors. It may be added that while these is no direct
general method of solving partial differential equations, the separation re-
duces Laplace’s equation to a set of ordinary differential equations which
in principle are always solvable.

The essential features of the method can best be demonstrated by means
of an example. Consider a pair of parallel grounded conducting plates at
y = 0 and y = a, as shown, with a line charge parallel to the z-axis at the
point (0, d). We seek a solution valid between the plates, assuming there
are no other charges. The problem is thus a two-dimensional one for
which rectangular coordinates are appropriate. Let us assume that
o(z, y) = X(x)Y(y), where X is a function of z alone and Y is a func-
tion of . Except for the point (0, d) the equation to be satisfied is

V2¢ = YX" + XY" = 0, (3-21)
Ay hy
L [ L @ 11
- b1 a 1 2 - d
l b1
L 0 —ez L 0 ——2

(a) (b)

Fic. 3-7. Showing two ways of dividing the space between capacitor plates
by planes containing the line of charge atx = 0,y = d.
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where the double prime denotes the second derivative of the function with
respect to its argument. If we divide Eq. (3-21) by ¢, we obtain

XII YII
F+3 =0 (3-22)

Since = and y can vary independently, both terms of Eq. (3-22) must be
independent of either variable, and we can write

X"/X = —Y"/Y = K. (3-23)

The constant K is called the separation parameter. If there are no re-
strictions on K the product of the general solutions of the ordinary differ-
ential equations is a general solution of the two-dimensional Laplace
equation. The boundary conditions of the physical problem, however, will
limit both the nature of the solutions and the values of the separation
parameter. The solution we seek is a sum (or integral, depending on
whether the allowed values of the parameter are discrete or continuous)
of allowed product solutions, with coefficients determined so that the
boundary conditions are exactly satisfied. In order to determine these
coefficients we shall make use of a property of the functions known as
orthogonality.

There remains a choice in the sign of the separation constant K and
thus in the nature of the corresponding solutions. Let us first assume
that K of Eq. (3-23) is positive, K = k?, so that the ordinary differential
equations become

Y + k*Y =0,
(3-24)
X" — k2X = 0,
having general solutions
Y = A sin ky + B cos ky,
(3-25)

X = Cé* + De™*=.

The boundary conditions to be satisfied are that ¢ = Oaty = 0,y = a,
and £ = +o. The potential may be made to vanish at the plates simply
by setting B = 0 and limiting k to the values nm/a, where n is an integer.
The conditions at plus and minus infinity along z, however, cannot be
simultaneously satisfied by either term of X, so that we must write the
solutions separately for the regions of positive and negative x:

o0 o0
. . nw _ . NT
1 = E Cre"™* sin «—(Ty ’ by = E Ane” "% sin —a—l—/-

—x<Lx<0 0<r<=w ne1
(3-26)

n=1
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At z = O the potential ¢ is continuous, so that the coefficients in the two
series are equal term by term, ie., C, = A,. We have yet to determine
these coefficients, however, and we have not taken account of the flux from
the line charge. This physical requirement must exactly correspond to
the mathematical determination of the A,’s, since the potential is unique.
Now a line charge could be represented by a two-dimensional é-func-
tion, but since we are writing the solution separately for regions 1 and 2 it
is possible to use cur knowledge of the boundary conditions at a surface
charge and employ a one-dimensional function 6(y — d) as a special case
of an arbitrary charge distribution along the surface x = 0. In other

words, on x = 0,
o(y) = qo(y — d), (3-27)

where ¢ is the charge per unit length perpendicular to the xy-plane and
8(y — d) is defined by the equations

f“ 8y — d)dy = 1,
0

(3-28)
[ fw) sty — ddy = j@), 0<d<a
The potentials must then satisfy the conditions
o(y) _qély —d) _ |:<3¢>1 . 6¢2} _ 2nmw . Ty
€ €0 Loz T o Z An a g (3-29)

The Fourier coefficients are determined in the usual way by multiplying
both sides of Eq. (3-29) by sin (mmy/a) and integrating from 0 to a. All
terms of the series on the right will vanish except that for which m = n,
i.e., the sine functions are “orthogonal” over the interval. Therefore

q . mmd _ 2mw a
e sin —— = — Amz’
or, on writing n for m,
. q . nmd ~
A, = P sin — (3-30)

_q 1. NTd przja . NTY
¢1 = _—-6011'2 o sin—=¢ sin —=
(3-31)
. _q—« ;I._ Zlﬂ'd _n—prx/a ’.’Z‘/Ty
$2 = €T 2 n o ’

and the problem is solved.
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Tt is instructive to note that the same potential may look quite different
with the opposite choice of sign for the separation parameter in Eq. (3-23).
If we put K = —k?, the solution for X () is just cos kz, since the poten-
tial is obviously an even function of x, but no limitations are imposed on
k. No single function Y will vanish on the two conducting plates, how-
ever, and we must again divide the region into two parts, this time by the
plane y = d. It can be easily verified that for any & the two solutions
which vanish at y = 0 and y = @, and are continuous at y = d, are

sinh ky

Y1 = b Jd 0 <y<d,
(3-32)
__sinh k(e — y)
Yu=Gike—a ¢<V<%

The potentials are integrals over k, with coefficients which we may call
A(k):

o1 = / A(k) cos k smh sinh ky dk,

sinh kd
ac (3-33)
. sinh k(a — y)
11 = . A(k) cos k inh k(e — d) dk.

The charge density on the plane y = d is now a function of z, and the
condition on the potentials is

q4(z) [adu 3¢11]

€9 ay
_ cosh kd = cosh k(a — d)]
/ A (k) co [ inh d T smh k(@ — @))°
_ ( cos kx sinh ka ~
- / sinh kd sinh k(a — d) k dk. (3-34)

But it follows from a formal application of the Fourier integral theorem,
and has been indicated in a problem at the end of Chapter 1, that

/w cos kx dk = 27 6(x) (3-35)

in the sense that both behave in the same way as factors in an integrand.
Therefore

q sinh kd sinh k(e — d)
2Teg k sinh ka

Ak) = (3-36)
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and the potential is given explicitly by

_q sinh k(a — d) )
o1 = Drreq / ¥ sinh kg oS kx sinh ky dk,

(3-37)

b1t = 3 7‘-:60 / kS‘S?:hk,‘fa cos kz sinh k(a — y) dk.

If ¢ = 1 this solution [Eq. (3-31) or (3-37)] is the Green’s function for
the two-dimensional parallel plate geometry, and we shall see that the
method is general for determining the Green’s function for a set of equi-
coordinate planes. But for our immediate purpose the details of this par-
ticular problem are less important than the principles they illustrate.
Usually one choice of parameters and corresponding functions is more
convenient than the other, but a choice must be made.

To achieve separation of variables in three dimensions we follow the
same procedure. In Cartesian coordinates ¢(z, y, 2) = X ()Y (y)Z(2), and
substitution in Laplace’s equation yields

V2¢ X! Y VAL

s X + 7 ‘+——Z—— = 0. (3-38)
We may therefore set
XII YII Z/I
xty =7 =%
(3-39)
XII Y/I
D

There are now two separation parameters; in general, the number of such
parameters corresponding to N independent variables is N — 1. The
lack of symmetry in the equations for the factor solutions is intrinsic in
Laplace’s equation, and may be said to correspond to the compiete sym-
metry in sign of the coordinates themselves in the Laplacian operator.
In three-dimensional rectangular coordinates two of the factors may be
circular functions, but not all three. It is necessary that the functions be
orthogonal in order to permit the determination of coefficients at a con-
stant surface of the third variable, but this can be shown to be a general
property of solutions of Laplace’s equation, independent of the coordinate
system for every case in which separation is possible.

The orthogonality of the allowed functions may be demonstrated by
means of Green’s theorem. Let us apply the proof in the case of spherical
polar coordinates, where the geometry is easily visualized, and then see
that it is applicable to other coordinate systems as well. Assume that
Laplace’s equation is separable, so that ¢(r, 8, ¢) = R(r)Y (6, ¢), and that
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whatever the nature of the functions or the parameter involved in the
separation, ¢; and ¢, are two allowed solutions. If we put these two
potentials into Green’s theorem, we obtain

[(¢1V2¢2 — $2V2¢)) dv = /[R1Y1V(R2Y2)
— Ry Yo V(R Y1)]-dS. (3-40)

The left side vanishes, since ¢; and ¢, are solutions of Laplace’s equation.
If we let S be the surface of a sphere, the component of ¥V parallel to S
does not operate on the function Y, and therefore

Ry R} / _ .
(R2 Rl) Y ,YodS = 0. (3-41)

But if the two radial functions correspond to different values of the sepa-
ration parameter they have in general different dependence on 7, and thus
their logarithmic derivatives are unequal. Equation (3-41) is thus a state-
ment that the two functions Y, and Y5 are orthogonal to each other when
integrated over the surface of a sphere.

If the coordinate surface is not closed the proof follows in exactly the
same way except that use must be made of the fact that the potentials
are zero at infinity. For sources confined to a finite region the potentials
do approach zero sufficiently fast so that the integral over the infinite
surface vanishes. We can therefore conclude that, in general, orthogonal
functions are generated in the solution of Laplace’s equation, and that if
the equation is separable it is possible in principle to complete the solution.

It can be shown that the set of allowed functions is complete as well as
orthogonal. We shall not take up the proof of this statement, but it
should be remarked that completeness is necessary for the existence of
a satisfactory potential theory. Without it the representation of arbitrary
potential or charge distributions on surfaces could not be guaranteed.
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Of the works listed at the end of Chapter 1 the most useful for electrostatics
problems are those by Jeans, Smythe, and Stratton.

P. Morse aND H. FEsuBacH, Methods of Mathematical Physics. This is a very
comprehensive work on mathematical methods.

E. T. WHITTAKER AND G. N. WaTtsoN, Modern Analysts. Much more formal
mathematically than Morse and Feshbach, this work is generally useful for the
properties of various functions and especially here for a discussion of convergence.

H. axp B. S. JErFrEYS, Methods of Mathematical Physics. Chapter 6 of this
excellent work is devoted to potential theory.

Somewhat more elementary treatments of useful mathematical topics are:

W. E. ByerLy, Fourier’s Series and Spherical Harmonacs.

R. V. CuurcHILL, Fourier Series and Boundary Value Problems.

EXERCISES

1. If ¢(x, y, 2) is a solution of Laplace’s equation, show that

1 T Yy 2
?¢<ﬁ’ﬁ’ﬁ>

is also a solution. [Use spherical coordinates. Compare Eq. (3-15).]

2. Let ¢(r, 2) be the electrostatic potential at a point (r, 2) in a situation of
axial symmetry, with r the two-dimensional radius such that r2 = z2 4 y2.
Let a be a small quantity and let r = na. Show that

¢(r,2) = {2nlp(r, 2+ a) + o(r, 2 — a)] + (2n + Do(r + @, 2)
+ 2n — 1D)é(r — a,2)}/8n,

at a charge-free point in space, correct to order a3. This is one of the typical
theorems useful in the “net point” method of field plotting.

3. Two coaxial pipes of the same diameter with a small gap between them are
maintained at a potential difference V. Divide the region within the pipe near
the gap into a rectangular net and guess the potentials at each point. Check the
correctness of your guesses with the result from the theorem of Exercise 2 above,
adjust incorrect values, and repeat until a reasonably correct distribution is ob-
tained. This is called the relaxation method.

4, Solve Exercise 3 analytically. Possible methods are:

(a) Separation of variables and fitting of coefficients.

(b) Derive a Green’s function by methods similar to that used in solving
the problem of Fig. 3-7, and then use Eq. (3-14).

(c) Use the image Green’s function as discussed in Section 3-5.

5. Show that the image system of Fig. 3-3 is correct.

6. Show that the image systems of Fig. 3-2 and Fig. 34 are related by the
inversion transformation.

7. Find the condition that a set of two-dimensional equipotentials ¢2 = f(z, y)
can generate a set of equipotentials when rotated about the z-axis. Show that if



60 METHODS FOR THE SOLUTION OF POTENTIAL PROBLEMS [cHAP. 3

this is possible the potential is

¢ = Afexp [~ [F(#2)d02] dgz + B
where
1 1 OJ¢2

F@2) = | T2 oy

(See Jeans or Smythe.)

8. Consider the field due to an electric dipole of moment p. What charge dis-
tribution would have to be introduced on a sphere with p at its center to produce
zero field outside the sphere?

9. Find a charge distribution that would produce the Yukawa potential

—rja

_ 49
Areyg T

Why must the total charge be zero?

10. Two closed equipotentials ¢1, ¢o are such that ¢1 contains ¢o; ¢, is the
potential at any point between them. If a charge ¢ is now put at point p and the
equipotentials are replaced by grounded conducting surfaces, show that the
charges q1, go induced on the two conductors satisfy the relation

q1/(po — ¢p) = q0/(p — ¢1) = ¢/(1 — do).

11. Show that Eqs. (3-31) and (3-37) converge, and that both correspond to
the physical situation.

12. Determine the potential inside an infinitely long rectangular prism with
grounded conducting walls at z = 0, a, ¥ = 0, b, due to a line charge of ¢ per
unit length located at the point (¢, d) inside the prism.

13. Let the source point in Fig. 3-4 go to infinity, and thus calculate the
charge distribution on a grounded spherical conductor in a uniform field E.
Also calculate the dipole moment of this distribution (which is equal to the
dipole moment of the images).

14. Obtain the solution of the problem

Po@) @)
dr2 €0 ’

0<z <,

¢(0) = 4, ¢(x) = B,

with p(z), A, B given arbitrarily, in terms of the Green’s function defined by

2

dz’2

€0 G, z) = —8( — x), 0 <2<

G0,z) = G(m,z) = 0.



CHAPTER 4
TWO-DIMENSIONAL POTENTIAL PROBLEMS

Potential problems involving geometrical arrangements that may be
approximated by a two-dimensional geometry with an infinite uniform
extent in the third direction are frequently easier to solve than three-
dimensional problems. Some methods are really only simpler in two
dimensions, and can be generalized to the study of three-dimensional
geometry. On the other hand, certain mathematical techniques which
have no genuine counterpart for three dimensions may be applied to two-
dimensional problems. The method of complex variable potential descrip-
tion combined with conformal transformation is an especially powerful
method of this second kind.

4-1 Conjugate complex functions. We shall show that in two dimen-
sions any analytic function W of a complex variable z; = z; + 7y,
will have real and imaginary parts each of which individually satisfies
Laplace’s equation in two dimensions. Thus a suitable function W =
W(z1) can completely describe the potential surfaces and field lines of a
particular problem. If ¢ + & = W = W(z1) = W(x; + w,), we may
separate real and imaginary parts and obtain ¢(x;, 1) and ¢(zy, y1). The
equations ¢ = constant and ¥ = constant will represent the equipoten-
tial and field line surfaces or vice versa. Therefore any transformation
from one complex variable z; to another z; will transform the solution of
one potential problem described by the first variable to the solution of
another potential problem described by the second variable. In general,
a whole class of two-dimensional potential distribution problems can be
solved by the following process:

(1) Obtain a transformation z; = f(z;) that will transform the geo-
metric arrangement of the z; coordinate system into an arrangement of
the 2z, coordinate system so as to bring about a simplification in the
problem. This coordinate transformation, z; = f(21) or 2; = g(z2), must
be so chosen that it will carry the complex potential geometry W = W(z,)
of the original problem into a simpler complex potential geometry W =
W1(g(22)) = Wa(z2).

(2) Express the potential solution ¢ in the transformed (i.e., z2) plane
in such a way that ¢ -+ 7y is an analytic function of a complex variable.

(3) Transform this solution back into the original z, plane.

We shall now discuss the justification for this process. Consider a func-

61
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S

¥o b2
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Fig. 4-1. Showing the relation between flux and streamlines.
tion W = ¢ + ¢ = f(2) where z = z + dy. At all points where the

functional relationship is analytic, ¢ and ¢ must satisfy the Cauchy-
Riemann differential equations:

o _ _ 9 _
ox oy’ (4-1)
o _ 3¢ -
dy oz (4-2)

By partial differentiation of Eq. (4-1) with respect to x and of Eq. (4-2)
with respect to ¥ and combination of the two resulting equations,

Vi = 0 = V%%. (4-3)

The last equality follows from a repetition of the partial differentiation
with the roles of z and y interchanged. Thus both ¢ and ¥ are harmonic
functions. The function W = f(z) cannot be analytic everywhere unless
it is identically zero; this correlates with the fact that, as discussed in
Section 1-1, Laplace’s equation cannot be satisfied everywhere if the
potential is to be nonvanishing. Singularities of the function W = f(2)
represent sources. In general, a singularity of W represents a “divergence-
type” source of one real potential function (¢ or ¢), and a “circulation-
type” source of the other.

The functional relationship W = W(2) can be demonstrated graphically
(Fig. 4-1) by plotting the lines ¢ = constant and the lines ¢ = constant
in the 2z = = + 1y plane, after the function W has been separated into
its real and imaginary parts. Note that the Cauchy-Riemann relations,
Egs. (4-1) and (4-2), ensure that these curves are normal to each other.
The curves of constant ¢ obtained by giving a succession of values to W
may be taken to represent the potential field of a problem, and the corre-
sponding ¥ curves taken to represent the electric field, although the latter
are usually referred to as the streamlines.
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The flux of the electric field crossing a surface S may be defined by
® = / E - dS. (4-4)

Let us consider a surface lying along onc of the equipotential curves,
¢ = constant, between two stream curves ¢; and ¢, and of unit height
normal to the zy-plane. For the purposes of this proof let i, j, k represent
unit vectors in the directions of increasing z, y, z and let t be the length
along the ¢ curve, as shown in Fig. 4-1. Since the surface is of unit height,
dt = k X dS. Then Eq. (4-4) becomes

2 2 3
<I>=]E-dS=—/V¢-dS= f(¢ + )-dS.
1 J1 1

By substitution from Egs. (4-1) and (4-2), we have

=_f1( )ds-——/ (Vg x k) - dS

= _/1 Vy-dt = ¢ — Yo (4-5)

Thus the difference between two stream functions ¥, and ¢ s represents
the electric flux passing between the right cylinders of unit height generated
by two neighboring lines ¥; and ¢,. This means that no lines of force
cross the constant ¢ lines. This is the justification for calling ¥ the stream
function, since in two-dimensional hydrodynamic problems the ¢ lines do
trace the streamlines of the fluid. In our case, the streamlines traced by
giving ¢ different constant values will trace the electric field, when ¢ lines
are the equipotentials of the field. If, on the other hand, ¢ had been
assumed to be the potential, then ¢ would have been the stream function.
This possibility of exchanging the meaning of ¢ and ¢ is frequently useful
in the solution of two-dimensional problems.

4-2 Capacity and field strength. The above considerations permit us
to obtain immediately the capacity between any two conductors whose
boundaries coincide with two equipotential lines ¢, and ¢3, and extend
between two streamlines ¥; and ¢¥,. From Eq. (1-26) and the definition
of &,

& — /E-ds = g/¢o.
The capacity is given by

— q — €d .
¢ b1 — o2 b1 — @2

(4-6)
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Since the flux ® is the change in the stream function ¢ between the edges
of the conductor surfaces being considered, Eq. (4-6) becomes

V1 — ¥
C—EO¢1'—¢2 (4=7)
Note that all the charges are assumed to lie on the bounding ¢ surfaces:
in general the stream function will be multiple-valued if charges are pres-
ent in the field. If the conductors are closed, ¥; — ¥ is a measure of the
multivaluedness of .
The absolute magnitude of the field strength can also be calculated from
a known function of the form W = W (z) representing a particular geom-
etry as in Fig. 4-1. Consider the modulus of the derivative of W

dW__3(¢+ill/)d_9£+a(¢+i‘#)@’
dz | ox dz Ay dz
(4-8)
aW| _og 40 W g L 09 li
dz "axdx+’aydy+’axdx+aydy dz

With the aid of the Cauchy-Riemann equations, we obtain

?2_?;9:43‘:\/%2
ox oy or

The real and imaginary parts of dW/dz are thus respectively the z- and
y-components of the gradient of the potential, and therefore the modulus
of dW /dz is equal to the magnitude of the electric field strength.

aw
dz

(%) = 1vel =Bl @D

4-3 The potential of a uniform field. Before examining some of the
transformations that are useful for simplifying complicated problems, we
shall look at two basic potentials from which many more general cases
may be generated by transformations and superpositions. The simplest
is that of a uniform field E directed along z, for which ¢ = —|E|z. The
complex potential can be seen by inspection to be

W = —|Ezg = —[El(z + i) = ¢ + %, (4-10)

and the stream function is ¢ = —|Ejy. (The potential ¢ has been arbi-
trarily set equal to zero along the y-axis.)

4-4 The potential of a line charge. The Coulomb field around a line
charge with a linear charge density ¢ is found by means of Gauss’s elec-
tric flux theorem, Eq. (1-26), the surface of integration being that of a
circular cylinder of radius r and unit height coaxial with the line charge.
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If the charge is located at the origin of coordinates in the xy-planc, this

field is given by
qr

 2megre

(4-11)

The corresponding potential may be secured by substituting this ficld into
Eq. (1-31) and integrating:
q

¢ = — Srec (Inr — Inrg). (4-12)

Again we note that in two-dimensional potential expressions it is not
possible to set the potential at infinity equal to zero, since the two-di-
mensional expression really represents the potentials due to charge dis-
tributions of infinite extent perpendicular to the zy-plane. It must be
remarked that a two-dimensional problem can be, at most, only an ap-
proximation to physical reality, for it implies not only infinite extent but
infinite charge. A physical problem can be treated by two-dimensional
methods only when it is possible to neglect end effects arising from the
finite linear extent of the physical arrangement. In Eq. (4-12) the cylinder
surrounding the line charge at a distance ry has been arbitrarily set at
zero potential.

The complex potential function corresponding to a line charge located
at an arbitrary peint 2z, may be derived by means of the Cauchy-Riemann
equations, but it is easily written merely by inspection of Eq. (4-12). We
introduce the complex notation z = re and z, = r,e®?. Consider the
complex potential

- _ _9 — _
7% Sreq In (2 2q)) (4-13)
whose complex conjugate is
* 9 * %
W S In (z 2a),

and hence the real part ¢ of W is given by

W wr
$= "3

— _ﬁ_g_ —_ * __ _%\11/2
= oTreg In [(2 2q) (2 2q)]

. 2 2  pEl/2 B
= e In [r + ry 2rr, cos (8 6*)]" <. (4-141)

This clearly corresponds to Eq. (4-12). By a similar analysis the stream

function is seen to be
W — W* -
— <..____,() ) = § — 9(1_ (4‘10)
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The complex potential function for any system of line charges can be ob-
tained by superposition of appropriately displaced expressions of the form
Eq. (4-13), one for each line charge.

4-5 Complex transformations. We now turn to the analysis of the be-
havior of curves in a small region of the complex potential plane when a
transformation of the plane is made. Consider a transformation from the
z1 plane to the 2z plane given by the equation z, = f(z;) and let the trans-
formation function f be analytic except at a finite number of singularities.
At all nonsingular points such a transformation is conformal. This means
that the angle between two intersecting lines in the 2, plane, such as 6, in
Fig. 4-2(a), transforms into an equal angle between the transformed lines
in the 2z, plane, as 62 in Fig. 4-2(b). This can be demonstrated as fol-
lows. Since all derivatives of an analytic function of a complex variable
exist and are continuous, the derivative dzo/dz; will be finite at all points
except for the singularities. Let us consider two line elements intersecting
at a point P;, for both of which dzy/dz; = f’(z;) evaluated at the point
P,. The argument of a product is equal to the sum of the arguments of the
factors, so that we have for the argument of the differential line element

PyQo:

arg (dzz) = larg f'(21)]p, + arg (dz1), (4-16)
and for the argument of PoR5:
arg (dzb) = [arg f'(21)]p, + arg (dzh). (4-17)

Subtracting Eq. (4-17) from Eq. (4-16), and noting that the angles 6, and
8, are the differences in the arguments of the respective dz’s, we obtain

61 = 02. (4“18)

The modulus of the derivative dzo/dz; = f’(z,) represents the scale fac-
tor by which all spatial intervals in the neighborhood of a point are mul-

b 21 plane by 23 plane

o) J (D)
dz dz)

le 2 2

@ ] 0o
\01 dzi
P, R, P
=T —» T2

(a) (h)

Fic. 4-2. To show that angles are preserved in a complex transformation.
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tiplied. This follows from the fact that the modulus of a product is equal
to the product of the moduli of the factors. An infinitesimal triangle will
thus transform into a similar infinitesimal triangle in the new system, and

|dzo| = |f'(21) Pi| - |dea]. (4-19)

The similarity of this transformed infinitesimal triangle and the original
one provides an alternate way of seeing that angles are preserved in ana-
lytic complex transformations. This means that the orthogonality between
stream functions and equipotentials is invariant under a complex variable
transformation.

4-6 General Schwarz transformation. A transformation that will re-
duce any number of rectilinear boundaries in the z; plane to a single
straight line boundary in the 22 plane is due to Schwarz. The Schwarz
transformation will map the inside of a polygon in the z; plane (although
the polygon need not be closed) into the upper half of the z; plane. It is
based on the special transformation, useful in itself, which changes the
size of an angle whose vertex is at the origin in the z; plane, as shown in
Fig. 4-3.

Consider the simple transformation

21 = zg, | (4-20)

where 8 is real but not necessarily an integral or a rational number. By
this transformation points on the positive real axis are mapped on the
positive real axis, although the scale along the axis is changed by raising
z; to the 1/8 power, or at least a branch of the transformation can be
chosen where this is so. On the other hand, for points lying on the nega-
tive real axis in the z, plane (25 = r26'%), 2; is complex, since by the trans-
formation z; is equal to r3¢'™. Hence the negative real axis of the z,
plane is the mapping of a straight line in the 2z; plane, as required by the
conformal properties of the transformation, but this line will make an
angle 73 with the positive real z; axis. The transformation of Eq. (4-20)
with 8 < 1 therefore maps the area of the upper half of the z; plane lying
between 6; = 0 and 6; = 78 into the entire upper half of the z, plane.

) 2y plane

U2 z9 plane

E—Zz = 7‘2(’”

(a) (h)

Fic. 4-3. Schwarz transformation for a single angle.
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bir

m ;
21 plane ! P 29 plane

Fic. 4-4. The general Schwarz transformation.

Of course, 8 may be greater than one, in which case the angle is obtuse.
The transformation has a branch point at 2z, = 0, at which angles are ob-
viously not preserved, but it is analytic everywhere else.

In the more general case of Fig. 4—4 there are a number of points b; in
the z; plane which are the corners of a polygon whose interior angles are
o;. We wish to map the interior of the polygon into the upper half of the
zo plane. Consider a transformation defined by the differential equation

@El —_ i — )P _
T = C, I=[1 (29 — ai)fe. (4-21)

Here C; is a constant, possibly complex. This transformation is analytic
everywhere except at the points z; = a;, which are real but otherwise as
yet undetermined. Hence by the conformal properties of such a trans-
formation the real 2z, axis, zg = x5, Will consist of mappings of straight
line segments in the z; plane. The angles which each of these straight
line segments make with the real axis will be given by the argument of
dz,/dzs evaluated in the segment in question. We may take the argument
of Eq. (4-21):

d
arg (&Zﬁ) = arg Cy + By arg (22 — a1)

+ Boarg (za — ag) + -+ + Brarg (22 — an). (4-22)
But

arg (%—Z—;—) = arg dz;. (4-23)

since dz, is real. Therefore Eq. (4-23) becomes, when evaluated in the ith

interval,
dz1) _ —1 Ely_l_) — f: _
arg ( d22> tan ( ir,) = 0;. (4-24)
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Now when 2z, lies on the real axis between a; and a;;;, the argument of
2o minus any point to the left is zero and the argument of z; minus any
point to the right is . Therefore a combination of Eqgs. (4-22) and (4-24)
leads to

0; = argCy + T(Bsy1 + Big2 + -+ Ba). (4-25)

Thus all points of the real axis segment a;; — a; are mappings of a line
segment with slope 6; in the z; plane. If we subtract Eq. (4-25) from a
similar expression for 6;,;, we obtain

Oiv1 — 0i = —TBits. (4-26)

From the geometry of Fig. 4-4(a) we see that this angle difference of
—mBiy1 at the point b;y, is related to the interior angle «;;; at each
corner by the relation

Qjp1 = T + Wﬁi-}-l- (4‘27)

For convenience, we may change the subscript to ¢ and solve for 3;,

ay _ .
B; = - 1. (4-28)
Hence Eq. (4-21) becomes
2= 0 1 o — apeie (4-29)
d22 1 2 2 ’

=1

where the scale factor C'; gives both the relative scale and the relative
angular orientation of the two geometries. This is the required transfor-
mation for a polygon with internal angles «;.

In general, the Schwarz transformation is a useful one provided that
Eq. (4-29) is integrable in terms of elementary functions. This is pos-
sible, with the exception of special cases, only when the angles are multi-
ples of 90° and not more than two corners are involved. One further
difficulty in the practical application of the Schwarz transformation is
that the resultant transformation is given in terms of z; = f(z2) with the
coordinate along the real axis in the z; plane as the independent variable,
rather than in terms of the coordinates of the z; plane, or the problem
polygon, as the independent variables. Therefore considerable computa-
tional labor is often necessary to find out what the coordinates a; in the
zo plane actually are in terms of the geometry of the given problem. Once
the a; are determined, the remainder of the solution of the potential prob-
lem is usually simple. The consideration of some special simple cases will
serve to indicate the power of the method and to illustrate its use.
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4-7 Single-angle transformations. A single angle can always be trans-
formed into the origin of the z; plane, so that a; = 0 in each case. For
some special angles Eq. (4-29) is immediately integrable:

(a) @ = w. The integration of Eq. (4-29) gives

21 — 0122 -+ Cz. (4—'30)

This is simply a uniform translation and rotation, and is of no physical
interest.
(b) « = /2. The integration of Eq. (4-29) gives

21 = 0325/2 —l— C2. (4—31)

If we assume that the constant of translation C, is zero, Eq. (4-31) will
map the first quadrant of the z; plane into the upper half of the z; plane.
If, for example, the complex potential in the z; plane is given by the com-
plex potential solution corresponding to a uniform field E,

(4-10)
¢ = —|Eljzs, ¢ = —[Elys,
then W in the 2z, plane, according to Eq. (4-31), is
W = —C4|Elz}
= —C4lE|(=z] — yi + 2iz1y1),
¢ = —C4lE|(z] — y),
= ——C4|El(2x1y1).
z1 plane
29 plane o1 P2 ¥3
¢1¢2 _.-__.L_-,.__J.yz_#__-___4__
/‘ 3 --T--—---—q-———-———--—--—-—-—-¢3
\\
~ ~ -ﬁ-——dr——~———-p———-»——-n——---‘/’Q
~<¥3 Ao b o441y
T[—~ V2
7 ,"“%14 z W%Mzzym%

(b)

Fic. 4-5. Schwarz transformation for a = /2.
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by, 21 plane

- -
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Fic. 4-6. Schwarz transformation fora = 0.

This will solve the problem of the charged rectangular boundary (see Fig.
4-5) or, if the interpretations of ¢ and y are interchanged, problems in-
volving charged hyperbolic cylinders.

If the complex potential in the 2z, plane is taken to be the logarithmic
potential corresponding to a line charge, Eq. (4-12), and if the transforma-
tion of Eq. (4-31) is then applied, we obtain the two-dimensional Green’s
function for an inside rectangular corner, provided that we have trans-
lated the line charge into the upper half of the z, plane. This same trans-
formation will give the Green’s function for a problem having hyperbolic
cylindrical boundaries, and thus problems involving such geometries are
amenable to solution.

(¢) « = 0. In this case, the integration yields

21 = Cg In 29 = Ca In To + 037:02, (4:—32)

if we omit the translation constant. If C3 is real the real part of z; is
C5 In rs, the positive real z, axis is the mapping of the whole real z; axis,
and the upper half z, plane maps into a strip of width Csm, as in Fig. 4-6.
The transformation can be visualized by considering the origin in the z,
plane to be pushed to minus infinity, and the negative real axis of the z,
plane to be revolved clockwise to a position parallel to the positive real
axis but located above it a distance C3m, as seen in Fig. 4-6. This trans-
formation thus results in a periodic configuration in the z; plane; of this
the strip Csm wide is the first repeat. The upper half of the z; plane is
the mapping of the first strip of this configuration in the z; plane. The
lower half of the z, plane is the mapping of the strip lying between y; =
Csm and y; = 2C3m in the 2z; plane, and so on. This transformation is a
very useful one in the solution of potential problems involving grids, re-
peating capacitor plates, and other geometries that repeat in one direction.

4-8 Multiple-angle transformations. A simple example is one of the
most useful. If two vertical lines in the z; plane are rotated into the
positive and negative real axes, respectively, then the upper half of the
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z; plane

z5 plane
, Y YR 4§ “2
A Y, Y2
A | 1 | '
I . .
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! i 1 1 ~o A _ -
T R 1 | T S \ / -
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(a) -« (b) +a

Fig. 4-7. Two-angle transformation.

2o plane will be the mapping of the vertically oriented, semi-infinite strip
seen in Fig. 4-7(a). The two transformed corners may be taken at z, =
+a, and the differential equation becomes

dz1 —1/2 —1/2 01_ 02
= C - = . 4-33
—_dzg = Cy(22 a) (22 + a) ,————-———zg 2 r————————az zg ( )

The relation C; = iC; has been introduced to rotate the figure 90° to the
orientation shown. Integration yields

z; = Cysin™! (%) ) 29 = asin (é%z) . (4-34)

In practice this transformation is most often used to transform a solution
in the 2, plane into the z, plane. If we consider a uniform complex poten-
tial field W in the z; plane,

W = —[Elz, (4-10)

mapped into the z; plane by Eq. (4-34), we see that we have obtained
the cross section of the potential around a charged conducting strip of
width 2a, or, exchanging potential and stream functions, the potential due
to a slot in a eonducting sheet. The major axis of the slot or strip is nor-
mal to the plane of Fig. 4-7. If the real and imaginary parts of the trans-
formed W are given sets of constant values they will characterize the field
of the arrangement. These equations turn out to be the equations of
confocal elliptic and hyperbolic cylinders, as indicated in Fig. 4-7.

Many other practical examples of double-angle tranformations are
readily integrable, and still others may be most easily found by simple
successive transformations, as indicated in the references listed at the end
of this chapter. Frequently the solution appears in a form that is decep-
tively simple, since, as we have noted earlier, it is sometimes very difficult
to solve for the z, coordinates as a function of z;. Despite these difficul-
ties, the method i1s obviously a powerful one.
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4-9 Direct solution of Laplace’s equation by the method of harmenics.
Many two-dimensional problems are at least as conveniently solvable by
methods for which analogs do exist in three dimensions as by complex
potential methods. Two-dimensional inversions and images are useful
special cases of general methods already treated. The solution of the two-
dimensional Laplace equation by separation of variables for plane polar
coordinates is particularly useful, since it has general validity whenever
circular or radial boundaries are encountered. Let us consider the appli-
cation of this method in some detail.

Laplace’s equation in the plane polar coordinates r and 6 is

) (90, 3% _ _
r5<ar> 592 = O (4-35)

To achieve separation we let ¢(r, ) = R(r)©(6), substitute in Eq. (4-35)
and divide by ¢. The result is

r 9 ( OR 1 970
'I—i 5;(1 >+ @ 602 = 0. (4—36)

The two terms must be individually constant, and we may choose the sign
of the separation parameter so as to give circular functions in the angle 8.
Since the range of 8 is always limited, the boundaries of 8 are always
“closed,” so to speak, and only certain values of the parameter will be
allowed, just as in the first treatment of the example of Section 3-6. In
other words, we muy set the first term of Eq. (4-36) equal to k2, to obtain

020
962

d { R\ 2,
Té;(r—é;—)'—knR—O,

where the separation parameter k2 is in general restricted to discrete values.
For k, # 0 the solutions are

+ k20 = 0,
(4-37)

0, = A, cos k,0 + B, sin k,0,

R, = Cur*" + D
and if k, = 0,

®, = E + F9,

Ry G+ Hlnr.
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The general solution is obtained by a linear superposition of the individual
(“harmonic”) solutions:

o0

¢ = Z Rn®n

n=0

= > (An cos ka + By sin ku0)(Car™™ + Dpr™™)
n=1

+ (E+ F6)(G + Hlnr). (4-38)

In order to apply Eq. (4-38) to the solution of a practical problem, we
shall first express certain already known potentials in this form, and then
superpose additional potentials, with undetermined coefficients, of the
same general form. The coefficients are determined by the boundary
conditions of the given problem, just as in Section 3-6.

4~-10 Illustration: Line charge and dielectric cylinder. To solve the
problem of a line charge located at a distance 7o from the axis of a dielec-
tric cylinder of radius a and specific inductive capacity «, as seen in Fig.
4-9, let us first express the logarithmic potential of the line charge alone
in the same form as Eq. (4-38). This amounts to shifting the origin of
the potential, as indicated in Fig. 4-8. We may omit the arbitrary poten-
tial base, so that Eq. (4-12) reduces to

_ _ 49 _
¢ = Sreq In R. (4-39)

Since Eq. (4-38) is in general nonsingular except at the origin r = 0, Eq.
(4-39) cannot in general be expressed by a single expansion about the new
origin, but must be written as two different solutions, one valid in the
region where r < ro and one valid where r > ro. These two solutions
must fit together at r = 7, in such a way that the derivative shall be dis-
continuous only at the point where the line charge is located, and con-

Field point

New origin

Original origin

0 To q

F1g. 4-8. Shifting the origin of coordinates for the potential.



4-10] ILLUSTRATION: LINE CHARGE AND DIELECTRIC CYLINDER 75

tinuous at all other points. The discontinuity is such that the total flux
emerging from that point corresponds to the value of the line charge per
unit length.

The logarithmic potential Eq. (4-39) of a line charge at the origin can
be put into the form of Eq. (4-38) of an isolated line charge located at
§ = 0 and r = ro, as in Fig. 4-8, if we express the radial distance R by
the law of cosines, B = (r3 + r? — 2rrg cos 8)/?, and then expand in a
power series in r/ro for use where r < r(, and in a power series in ro/r to
use where r > ro. Both series converge within their respective ranges of
validity. The result gives us the potential due to a line charge:

S |
= =\-—) cosnd — Inry{> 4-40
o<r<rg  2TEg {ngl n \ro ° (4-40)
= —{=) cosng — 1 . 4-41
ro<¢;‘<oo 2meo {,; n\r " nr ( )

Tor the problem of the line charge and dielectric cylinder we shall choose
the origin of the polar coordinate system at the center of the dielectric
cylinder, with the radius vector corresponding to 6§ = 0 passing through
the charge, as shown in Fig. 4-9. This is the same coordinate system as
that in which Eqs. (4-40) and (4-41) are written. To satisfy the bound-
ary condition at the surface of the cylinder r = a we shall superpose on
the line charge solution (4-40) a general solution of the type of Eq. (4-38)
with k, = n and with undetermined coefficients A,, B,, E, and F, and
make a separation of the potential into two parts ¢; and ¢2 to be valid
outside and inside the cylinder respectively. The coefficients are to be
determined so as to account for the polarization of the dielectric cylinder,

/ ?i

- (effective
charge for ¢g)

q (1“ ;%{) (effective charge for ¢) : | : > (effective charge for ¢1)

Fic. 4-9. Line charge and dielectric cylinder.
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and the separation is made to ensure a finite value for the potential at
the origin and convergence of the second series in each expression.

¢ ————q-——{i—l—(—r—Ycosnﬂ——lnr}
a<rér0 27T€0 e n \ro °

1

+ Z B,r " cosnf + F, (4-42)
=1

b = ()_L {Z - <;7:(—)) cosné — In ro}

0<r<a «T€p

+ D Ancosnf + B (4-43)

n=1

Since the effect of the induced polarization charges in the cylinder is non-
singular both at the origin and at infinity, and the solution is obviously
symmetric about the line 8 = 0, it has already been possible to simplify
the expression (4-38) by omitting the logarithm, the angle and its sine,
and by using only positive or negative powers of r as necessary to assure
convergence.

For any angle 6 the boundary conditions of Section 2-2 for the surface
of the dielectric »r = a are just

_ 01 _ 9%z -
b= 2 =k (4-44)

We can evaluate the coefficients A,, B,, E, and F by applying these con-
ditions to Eqgs. (4-42) and (4-43) and then equating the coefficients of
cos nf, term by term, to zero. This procedure is justified mathematically
by the fact that these Fourier series functions form a complete orthogonal
set. The resultant solution is

__a [y L:..K.ﬂf)”i] _ } _
a<?ir0—27r€0{,;n[<7’o> +(1+K><T0 —|eosnd —Inror, (4-45)

an

_ 9 N LN e 4 B

0<r<a ne1

For r greater than 7y the solution may be written down immediately,
analogously to Egs. (4—40) and (4-41). :
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If we add zero to Eq. (4—45) by adding and subtracting

k—1) Inr
T+ % 27eq

we see that the potential ¢, outside the cylinder corresponds to an effec-
tive line charge arrangement, with the role of the cylinder taken by two
line charges. This arrangement consists of an effective charge g(k — 1)/
(1 + «) located at the origin, an effective charge —q(x — 1)/(1+ k) located
at the inversion point of the actual external charge, and the actual charge.
The inversion point lies on the vector rq at a distance a?/rq from the origin.
This problem could therefore have been solved by the method of images,
a fact which can be verified directly by the use of the logarithmic poten-
tials. On the other hand, the potential ¢. inside the cylinder is seen to
correspond to a single effective charge at the position of the actual charge
but of strength 2¢q/(1 + k), except for an additive constant. The potential
everywhere, then, is equivalent to some line charge arrangement and the
dielectric cylinder absent.

4-11 Line charge in an angle between two conductors. As-another ex-
ample of the solution of a problem in terms of circular harmonics, let us
consider a wedge-shaped region bounded by grounded conducting surfaces
intersecting at the origin with an interior angle «, as in Fig. 4-10, together
with a line charge of strength ¢ per unit length located at the point (rg, 8)
within the wedge. The solution of this problem will give the Green’s
function for the region bounded by the intersecting conducting planes. It
is again clear that we cannot hope to express a solution by means of a
single equation valid throughout the region from » = 0 tor = o. The
solution must be written in two parts, one valid for r < r and the other
valid for r > rg, joined together at the cylindrical surface r = r¢ by the
flux condition corresponding to the charge ¢.

Since the potential vanishes on the boundaries § = 0 and § = «, the
angular part of the solution must be of the form sin (nmw6/a). Thus, in

\ o Field point
r—_"_s‘o
!
i
i 2
]

€ = o
g ¢
0 \% _— Source point
| Js i

N

Fic. 4-10. Line charge parallel to two intersecting plane conductors.



78 TWO-DIMENSIONAL POTENTIAL PROBLEMS [cHAP. 4

Eq. (4-38), k, = nm/a. The potentials are then formally:

a0 nr/a
r . nmw
¢ = ) C, (——) sin o 6,

r<rg

(4-47)

The coefficients C,, and D, must be equal in order to assure continuity of
the potentials across the cylindrical surface r = ro, so that we shall have
solved the problem if we determine the C,.

The line charge is equivalent to a surface charge ¢(8) on the cylinder
r = ro, where d(0) = ¢q (8 — B). The angular é-function can be defined
by the equations

mEMO—@d%=L

(4-48)
J, 7@ 86 — B)do = j(B)/ro, 0 <B<a
The flux condition is thus
_ d¢s ¢ B
qé(6 — B) = — [ar ariszo (4-49)

The determination of the coefficients is almost identical with that of Sec-

tion 3-6, and leads to
Cn=7;%sm<ﬁ?)- (4-50)

The complete solution is therefore

4 L\ nwB . nwh
Te §n<> SlnaSl )

g
I

r<ro To o
(4-51)

_ 4~ L (roY g a8 L o

o, =7 o () i

Just as in the case of parallel plates, this solution is the desired Green’s
function when ¢ is set equal to unity. It is thus evident that the method
is a general one for deriving the Green’s function within a set of bound-
aries corresponding to equi-coordinate planes.
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SUGGESTED REFERENCES

W. R. SmYTHE, Static and Dynamic Electricity. Chapter IV is devoted to two-
dimensional potential problems, with many examples.

J. C. MaxweLL, Electricity and Magnetism, Vol. 1. There have been many
elaborations of potential theory since Maxwell’s time, but this remains one of the
best fundamental texts.

J. H. JeaNs, The Mathematical Theory of Electricity and Magnetism. Follows
the general presentation of Maxwell, and gives many examples.

E. WEBER, Electro-Magnetic Fields, Vol. 1. A more modern treatment.

L. A. Prees, Applied Mathematics for Engineers and Physicists. Chapter XX is
a good example of the clear and simple treatment of conjugate functions found in
several books on applied mathematics.

H. anp B. W. JEFFREYS, Methods of Mathematical Physics. Chapter 13 on
conformal representation is particularly useful.

R. Courant, Dirichlet’s Principle. Treats conformal mapping and relevant
existence theorems.

EXERCISES

1. By inversion, find the law of image formation for a line charge parallel to a
conducting circular cylinder. Apply this method to the case of a large cylinder of
radius b containing a smaller cylinder of radius a, the distance between their axes
being ¢ < b — a. Find the capacity per unit length, and show that forc = 0 the
result reduces to that for coaxial cylinders.

2. Derive the two-dimensional form of Green’s boundary value theorem: if
¢(z, y) is the two-dimensional potential, show that

P 2 . dp 9 (logr)
¢(x,y)—27r{/s(logr)V¢dS f;(logran ¢ —5 )dl},

where § is the area bounded by the contour C and r is the distance between the
point z, ¥y and the point 2/, y’. = is the outward normal.

3. Find the field surrounding a charged conducting cylinder whose cross section
is an ellipse.

4. Consider two planes intersecting at right angles raised to potentials V/2 and
—V /2, respectively. Calculate the electrostatic field.

5. The transformation
a /21 , a1
29 = — { — —

ay 21

transforms the region outside the cylinder r1 = ay in the z; plane into the entire
z2 plane with a cut along the real axis for —a < z < a. By transforming the
complex potential function corresponding to a conducting cylinder in a uniform
field, find the complex potential function corresponding to a strip of width 2a
with its plane (a) in the direction of an applied field E, and (b) perpendicular to
an applied field E.
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Yy

Ficure 4-11

6. Consider a parallel plate capacitor, y = d-a, of infinite extent, and y = 0
semi-infinite, as indicated in Fig. 4-11. The two outside plates are at the same
potential. Calculate the capacity per unit length along z contributed by the
edge effect, i.e., the difference between the actual capaecity per unit length and
that estimated by assuming zero field for < 0 and uniform fields for z > 0.

7. Aninfinite circular cylindrical sheet of radius a is divided longitudinally into
quarters which are raised to potentials V, 0, —V, 0, respectively. Show that the
potential inside the cylinder is given by

_ Z -1 2ay ) -1 2ax .
¢ = - {tan (————-———a2 — r2) + tan (——————az — rz)}

What is the potential outside?

8. Consider the region of space between the cylinder z2 4 y2 = b2 and the xz-
plane. All the curved boundary and that portion of the plane boundary for which
a < |r| < bareat zero potential. That portion of the plane boundary for which
—a < |z| < ais at potential V. Show that the equation of the lines of force in
the region for whichae < r < bis

n 1 %
Z e [__ + (—g) ] cos nf = constant,
~ n [

where only odd values of n are taken.
9. Let ¢(x, y) be the potential in a two-dimensional field. Let F(z) = ¢(zx, 0)
and F, be the nth derivative of F with respect to . Show that if ¢(x, y) =

¢(x: —y)’
¢(z,y) = ZAuy""Fan,
where A, = (—1)*/(2n)!.



CHAPTER 5
THREE-DIMENSIONAL POTENTIAL PROBLEMS

Laplace’s equation may readily be written in any orthogonal coordinate
system for which the infinitesimal line elements are known: the operator
v?2 is just the divergence of the gradient, and the application of the diver-
gence theorem to the gradient over the surface of an infinitesimal volume
element yields the required expression.* In a number of these systems the
equation is separable, so that the methods of Section 3—6 can be applied.
The two coordinate systems treated in this chapter further illustrate the
general method, and correspond to geometrical configurations often en-
countered in practice, namely, spheres and circular cylinders, or parts
thereof. Spherical coordinates also furnish a particularly useful repre-
sentation of the potential due to an arbitrary distribution of charge con-
fined to a region near the origin of coordinates.

5-1 The solution of Laplace’s equation in spherical coordinates. Iix-
pressed in spherical polar coordinates, Laplace’s equation becomes

2_11(za_«z_b> 1 _6__<. 3¢ 1 3% _
Ve =25 \" /) Tresne a0\ %3 +r2sin266¢2_0'
(5-1)

In order to separate the radial and angular parts of this equation, we put
= R(NY(9, ¢) (5-2)

and proceed in the usual way. The separated equations are

d 2 aR — B
57.‘(1- _é—r—) —n(n+ 1)R = 0, (5-3)

1 9 (. ,8Y 1 d°Y
sin 6 96 (sm 6 79—9_) + sin2 6 9¢2 tam+ 1Y =0 (5-4)
The form of the separation constant n(n + 1), where n is a.real integer, is
dictated by the necessity{ that there be a regular solution at the singulari-
ties of the equation for ¥, which occur at 6 = 0 and 6§ = w. In general,
Y (6, ¢) is known as a spherical harmonic. It has already been proved that

* See Appendix III.
1 If boundaries are such that 6 = 0 and § = = (i.e., the polar axis) are ex-
cluded, then n need not be an integer.

81
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the set of functions Y,(8, ¢) have orthogonality properties similar to those
of the Fourier functions we have considered in connection with two-dimen-
sional solutions. The general solution of the differential equation for the
radial part of ¢, Eq. (5-3), 1s simply

R(r) = Ap™ + Bor "L (5-5)

The spherical surface harmonics can be further separated by means of
the substitution

Y (8, ¢) = 0(6)2(¢). (5-6)

If the new separation constant is called m?, then, in terms of the more con-
venient polar angle variable, u = cos 6, the two resulting equations are

2

= [(1 — ) %g] tln 4 - 12 Sle=o 6

d%®

-'d"ﬁ m2@ = 0. (5—8)

The solutions of these equations are

0 = CoP7(p) + Da@Qn(n). (5-9)
® = E,,cos mg + Fpsinme, m # 0, 5
® = Go + H, =0.’ (5-10)

The functions P (cos 8) and Q' (cos ) are the associated Legendre func-
tions of the first and second kind, respectively. Their mathematical
properties can be found in numerous references, some of which are listed
at the end of the chapter. We need note here only that P7’ is the solu-
tion that is finite for u = =1, and thus the only solution allowed when
the space involved in the problem includes the polar axis.

5-2 The potential of a point charge. For problems having azimuthal
symmetry, so that the solution does not depend on the value of the co-
ordinate ¢, i.e., ®(p) = constant, the separation parameter m is equal
to zero. The potential of a point charge at a distance r¢ from the origin of
coordinates has such symmetry if the radius vector of the charge is taken
as the polar axis. We may obtain the potential of a point charge, expressed
in terms of a series expansion in the radial and angular functions obtained
in the above separation of coordinates, by expanding the cosine law
expression for 1/R (see Fig. 5-1) in powers of r/r¢ and ro/r.

1 1 r 2 r —1/2 1[ 1'0)2 ro ]-1/2
-R—r—()‘[(;;)+1—2;;0080] ——-'1-_‘ —T' +1°—2—r—0080

(5-11)
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N /_Source point

q
%2 Field
R point

Lo

~—t -

_ 9
Y = 4regR

Fic. 5-1. New polar coordinates for the potential due to a point charge.

becomes, according to the region of convergence,

o0

= ;l-g ( ) Pu(p) = ;1; > (—’;?) Po(p). (5-12)

n=0

Equation (5-12) is often taken as the definition of P,(u). It is obvious
from carrying out the expansion that these functions are polynomials of
degree » in the variable u. By explicit differentiation of 1/ with respect
to u and with respect to the expansion variable, it can be readily shown
that P,(u) satisfies Eq. (5-7) with m = 0.

For the same reasons as in the harmonic expansions of Chapter 4, we
must use two potentials, one valid where r is less than 7o and one for r
greater than ro. The two potentials are

— = . q ® T_Q n
Tﬁio B 47!'607‘0 Z_—_: ( > n(l-‘), ri)go - 4megr nz._o (7') Pn(“).
(5-13)

The resulting potential of the point charge is therefore just a Taylor-
Laurent series in r whose coefficients are the Legendre polynomials in cos 6.

5-3 The potential of a dielectric sphere and a point charge. Problems
involving point charges and boundaries which have spherical symmetry
can be solved in terms of the functions of the foregoing section. As an
example, we shall consider the simple problem of a point charge and a
dielectric sphere of radius a, as shown in Fig. 5-2, with r¢ being the dis-

Dielectric \
sphere \ Ty

Fic. 5-2. Dielectric sphere and point charge.
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tance from the center of the sphere to the point charge. We shall need
three expressions for ¢:

Z Apr"Pp(u),

0<r<a —0

_ q 0 _7'_ n ) 1 ~
b2 = WMOE (m) Py (k) + Z,O Bur ™" T Pp(w), (5-14)

0 r 0 e
3 4:7!'607' Z=: ( 0) Pp(p) + 1;) Bnr 1Pn(l-‘)-

7o <r <o

The fit of ¢; to ¢2 at r = a ean be made in the same way as for the two-
dimensional case. The boundary conditions of Egs. (2-15) and (2-19)
must be satisfied for all values of the angle 6§, and the fact that the angular
functions are orthogonal makes it possible to equate the terms of the series
separately to determine the coefficients A, and B,. The fit of ¢z to ¢3 is
inherent from the nature of the solutions in Eq. (5-13). For k = < the
solution reduces to that obtained by the inversion process outlined In
Chapter 3.

5-4 The potential of a dielectric sphere in a uniform field. As a second
example of a problem with spherical geometry, let us consider a dielectric
sphere of specific inductive capacity k in the presence of a uniform field
whose force lines are parallel to the z-axis, as shown in Fig. 5-3. The
lines of electric displacement D are shown.

Fic. 5-3. Dielectric sphere in a uniform field.
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Since the field at infinity is uniform, the potential is given by
¢ = —Eor.= —Egrcos = —Eogu = —EgrPy(n). (5-15)

By inspection of Egs. (5-5) and (5-9), we may write

$1 = L An"Py(w),
0 (5'—16)
$2 = D B 'Pu(n) = EorP1(p),

n=0

for the potentials inside and outside the sphere. The boundary condi-
tions, ¢; = ¢, and k(d¢:/dr) = (d¢2/dr) at r = a, must hold for all
values of the angle 8. We therefore evaluate the constants A, and B, by
equating the coefficients of P,(u) for the same 7, and find that

Ay = By = 0= A, = B, forn greater than 1,

—3E A
Ar = 7 5 (5-17)
(k= 1)E0a3.
Bi =773
The potentials are therefore
1 = — fﬁog cos 8,
(5-18)

by — (k — 1) Ega®cos 6
27 k+2) 72

— Eyr cos 6.

These equations correspond to Egs. (5-14) in the limit 7o — 0. Note
that the field E inside the sphere is uniform, but is smaller than the
field at infinity by the ratio 3/(k + 2). It is also seen that the induced
field of the sphere in the region outside the sphere is that of a dipole whose

moment is
p = 4meya’ (ﬁ;———;—) E,. (5-19)

Let a quantity L be what is known as the depolarization factor for a

dielectric body, defined as
__Ii . IE()I = |Einside| .

€o lPinsidel

It will be remembered that P = €3(k — 1)E, from Eq. (2-12). Then for

(5-20)
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a sphere L = %, while for a thin rod oriented parallel to the field L ~ 0,
and for a thin disk oriented normal to the field L = 1. Thus the electric
field within a dielectric body in a uniform filed is always smaller than the
field at a large distance, while the dielectric displacement is always larger.

5-5 The potential of an arbitrary axially-symmetric spherical potential
distribution. The potential at any point in space corresponding to a given
potential distribution, ¢(a, 8), over a sphere of radius a, can also be written
in terms of Legendre polynomials. From Egs. (5-5) and (5-9), we shall
have two potentials, one valid inside and one valid outside the surface:

¢ = Z AnrnPn(P’);

r<a n=0
(5-21)
¢ = Z Bnr——n——an(#)'
=0

r>a

We can determine A, and B, by taking advantage of the orthogonality of
the functions P, (u) if we know the normalizing factor, i.e., the integral of
P2 over the range of its variable. Stated in a general way, so as to include
orthogonality, the integral needed is

+1
2
/_1 Pn(l«‘)Pm(“) du = 2_m Omn,y (6-22)

where 6., = 1 if m = n, and is zero otherwise.

Either of Egs. (5-21) may then be equated to ¢(a, 8) for r = a, the re-
sulting equation multiplied by P,(p) and integrated from u = —1 to
u = -+1; only one term of the series survives, namely, that for which
n = m. As a result of solving for 4,,

+1
2 1
An == nz;: /_1 ¢(a; O)Pn(“‘) d.u' (5—23)
and
B, = a*"t'4,. (5-24)

The potentials therefore become
+1
" P (1) 1 ¢(a, 0) Palu’) du’,

I
|

¢

r<a 2anr

o (5-25)
= 2 1 n —_n— ’ ! ’
¢ = Z "—'é'-"_a +lr IPn(:u) /_1 ¢(a7 0 )Pn(lu' ) dy' .
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5-6 The potential of a charged ring. Let us consider the potential of a
charged ring, of total charge ¢, located at a distance ro from the origin, as
seen in Fig. 5-4, with r; making an angle 6, with the axis of symmetry.
If the distance from the origin along the polar axis is called z, the potential
along the polar axis, found by expanding 1/R in the Coulomb potential
by Eq. (6-13), is

0 - 2 S (2 e o

r<ro 4Tegro

(5-26)

¢ (3,0) = L i (IQ)HIPn (cos ).

r>rg 471'607'0

It is evident from the series of Eq. (5-12) that P,(1) = 1. Therefore the
potential at a general point, not lying on the polar axis, may be found by
multiplying the nth term in the series by P,(u) and writing r for z:

o 0 = L= 3 (Z) Pu (con 0P, (eos ),

To

(5-27)

q o (r0>n+l P
¢ (r,0) = Trears 7?;) " P, (cos 0;)P, (cos 6).

r>r0

The uniqueness theorem is essential to justify the argument that led to
the above result.

<b(ﬁ2,0)1

Field point

Origin

Fic. 5-4. Coordinates for finding the potential due to a charged ring.
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5-7 Problems not having axial symmetry. If the geometry of a prob-
lem does not have axial symmetry, but does have spherical boundaries,
the potential solutions for the problem may be written down formally just
as in the examples above. The constant m must be allowed to have values
different from zero in order to represent the asymmetry, the spherical har-
monics Y™(6, ¢) are characterized by two parameters, and the series solu-
tion is a double sum: for each n there is a set of values for m, with the
condition that m < m. The functions ® are simply the Fourier functions,
and the functions © are P, (u) and Q)'(u), the associated Legendre func-
tions. Thus the form of the separated functions is different, but no prin-
ciples are involved which have not been exemplified in problems for which
® is constant. We shall therefore omit a detailed discussion of such prob-
lems. We shall also omit the consideration of problems with conical
boundaries that exclude the polar axis from the range of potentials, and
which require the use of @7'(u) in order that the boundary conditions be
satisfied. References for the treatment of many such problems are listed
at the end of the chapter.

5-8 The solution of Laplace’s equation in cylindrical coordinates. La-
place’s equation in the cylindrical coordinates r, ¢, z is

Lo (,a8) 1% o _ ]
r dr (7‘ 5)r>+r2 dp2 ' 922 = 0. (5-28)

Separating by means of the product functions,

o(r, ¢, 2) = R(r)®(p)Z(2), (5-29)
we obtain
_Ei_ _@ 2.2 2 . _
rdr(r dr)—}—(kr n“ )R = 0, (5-30)
d’® 0.
Ecp_z- n°d = O, (5—31)
&z _ k*Z =0 (5-32)
dz2 ’

where k and n are the separation parameters. Equation (5-30) is known
as Bessel’s equation, and its solutions are called Bessel fur *tions. The
character of the solution will depend markedly on the sign of the separa-
tion constant, i.e., on whether n» and k are real or imaginary. If solutions
are desired which are single valued in the azimuth angle ¢, then the solu-
tions must be periodic in ¢ and n must be a real integer. If k is real, the
solution Z(z) is a real exponential, and the radial solution/s are combina-



5-8] LAPLACE’S EQUATION IN CYLINDRICAL COORDINATES 89

tions of the Bessel functions designated by J,(kr) and N,(kr). Excellent
treatments of Bessel functions and their properties are listed at the end
of the chapter. We need remark here only that J, and N, are oscillatory
functions of their arguments, that both go to zero as kr — oo, and that
J . is the solution which is regular at r = 0, a point for which Eq. (5-30) has
a singularity. For real n and k, then, the integrals are of the form:

R(r) = ApJn(kr) + B,N(kr), k # 0,

R(r) = Ar™ + Br7™", k=0,
®(p) = Cpcosne + D,sinne, n # 0,
(5-33)
Z(2) = Exe*® + Fre™*, k = 0,
Z(z) = Ez + F, k=

If » and k are both zero,
¢ = (Alnr + B)(Ce + D)(Ez + F).

We shall illustrate the use of these cylindrical functions by outlining
the solution for a sample problem. Consider a case which has azimuthal
symmetry, so that n = 0. If the solution extends to infinity radially, so
that there are no cylindrical boundaries that might impose restrictions on
the radial function R(r), there are correspondingly no restrictions on k and
the solution involves an integral over all k. The integral will have the form

]0 * e2** (k)T o (kr) dk. (5-34)

Instead of determining a set of coefficients in a sum, we have now to de-
termine the value of the function f(k). The potential of a point charge
may be expressed by an integral of this kind and, in fact, is given in terms
of a mathematical identity

ir__ 1 _/w +kz _
R—m_z—é_ . e="*J o(kr) dk, (5-35)

where the exponential is positive for z < 0 and negative for z > 0. The
Coulomb potential ¢ = q/4meoR is

_ _4q tkz i
¢ = 47reo,/(-, e="*J o(kr) dk. (5-306)
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A2 .
o=, g n(kyekeJo(kr)dh

Ky P4
= [T imvekeogkndk + [ mkyekaTo(kr)dh
o o ¢3 fo L(kyeke T o(kr) +'j; m(k)e kT o(kr)
_ 7 Nk . C O e Tl bl
‘o s b2 Jg g(k)ekzJo(kr)dk +£ h(kye ]y (kr)dh
o1 = o [T eklohnydk + [ ik s ok dk
K} ¢1 dreg Jo . 0

> T

Fig. 5-5. Parallel layers of dielectric materials under the influence of a point
charge q.

The potential of Eq. (5-36) can then be used in combination with the in-
duced potential of the form Eq. (5-34) to write down the solution of a
problem corresponding to plane boundaries normal to the z-axis and under
the influence of a point charge located at the origin. This layer structure,
shown in Fig. 5-5, composed of several layers of different inductive capaci-
ties, ki, Ko, etc., has the potentials shown in the figure. If we apply the
boundary conditions at all of the interfaces and equate the functions
under the integral sign, there will be a sufficient number of equations to
determine the functions of k, and therefore the solution in every layer.

If the cylindrical solution is required to be periodic in the z direction,
k must be imaginary, and the appropriate solutions of the radial equation
are Bessel functions of an imaginary argument. It is customary to substi-
tute ¢k for k, so that Eq. (5-30) becomes what is called the modified Bessel’s
equation,
r a (r %I;—) — &** 4+ 2HR = 0. (5-37)
The required solutions are designated by I,(kr) and K,(kr), which are
related to the Bessel functions of imaginary argument tabulated by
Jahnke and Emde in T'ables of Functions:

I(2) = i7,(iz), (@/mMKu() = " HPGr) = (—)" T HP ().
(5-38)
‘The nature of the functions is indicated by the fact that for large z,

1 \2 \1/2
I.(x) — (%) e’ K,(z) — (ZE) e " (5-39)

Just as in rectangular and spherical coordinates, we note that it is im-
possible for all three factors of Eq. (5-29) to be oscillatory functions of
their respective variables.
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5-9 Application of cylindrical solutions to potential problems. Lists of
the mathematical properties of Bessel functions necessary for the solution
of actual physical problems are found in the references. To solve prob-
lems involving conducting cylindrical boundaries, we must make use of
tables, much as we make use of trigonometric tables for circular functions.
Inside a grounded cylindrical conductor of radius ry, for example, each
solution must satisfy the condition J,(kro) = 0, so that k is limited to a
discrete set of values k;, where [ is an index numbering the zeros of J,
from 1 to infinity. The entire solution is, in general, a double sum over n
and [/, with coefficients determined so as to satisfy the boundary condi-
tions. The orthogonality of the functions follows from the general proof
of Section 3-6, or it may be shown from the differential equation (5-30)
that

/0 °J () w(leyr)r dr = 0

if I # I'. The orthogonality of the partial potentials corresponding to
different n is obvious from the form of &.

The method can be adequately illustrated even with loss of complete
generality by the problem of a point charge at the origin of coordinates
within a grounded conducting cylinder about the z-axis. The simplifica-
tion here arises from the azimuthal symmetry, so that the entire poten-
tial is independent of ¢, and the radial solutions are confined to Jo(k;r).
The desired solution has the form

¢1 = D, AT (ki) for 2z < 0,
l=1
(5-40)
¢ = Z A g k), for 2 >0,

-~
I
—

V-4
7

<]

A\

N

N

N
A\

F1c. 5-6. Point charge inside a grounded conducting cylinder.
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where k; is such that at the radius of the cylinder r = ro, Jo(kiro) = O.
The flux condition at the plane z = 0 can be stated by means of a two-
dimensional 8-function defined by the relation
T
27:‘/ s()rdr = 1, (5-41)
0
so that

q8(r) [am B 3052]
2=0

€o 9z 0z (5-42)

= QZsz l.]()(kﬂ‘).

If we multiply both sides of Eq. (5-42) by Jo(kyr)r dr and integrate over
r, we obtain, using the orthogonality properties of Bessel functions,

9—‘{7‘:_@01 — 2k 4, / ok ]2 dr,

or
q/ €0 J0(0)
= - . (5-43)
ik [0 [T o(ki))?r dr

Now the Bessel functions are defined in such a way that J¢(0) = 1, and it
may be shown by multiplying Eq. (5-30) by (dJ,/dr)r? dr and integrating
by parts that

TO 2
/0 [Jo(ku))?r dr = -[ 1(kiro))?

if we take account of the boundary condition at ro and the mathematical
identity
dJ n

a—(—i{;—{-’;—)— - —Jn+1 + ‘k; Jn. (5-44)
Therefore
VA R (5-45)
 2mky rotd 1(kiro)]”
and
q S kiz Jo(kir)
o1 = € 2’
' 21rroe z___: kl[v’l(/ﬂlro)]z
© 5-46)
. — Z e Jolkim) (

21rroeo =1 kol 1(kro))? ‘

A generalization of this procedure can be used to determine the Green’s
function for the interior of a conducting cylinder if the point charge is
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located at an arbitrary position r = a, ¢ = a, 2 = 2z¢. In that case the
potentials are written separately for z < 2, 2 > 20, and the flux condition
is expressed in terms of the generalized two-dimensional é-function for
which

/ 5(r — a) 8(¢ — a)rdrde = 1. (5-47)

The resulting Green’s function is a double sum over » and [ which reduces
to Eq. (5-46) with ¢ = 1 for the unit charge at the origin.

SUGGESTED REFERENCES

Of the references listed in earlier chapters those by Smythe, Jeans, Stratton,
Weber, Jeffreys and Jeffreys, and Morse and Feshbach will probably be most
useful for solving more elaborate potential problems than we have included.
The properties of Legendre and Bessel functions are dzveloped in an elementary
way by Byerly in Fourier’s Series and Spherical Harmonics, and more complete
treatments are to be found in:

T. M. MacRoBERT, Spherical Harmonics.

G. N. WartsoN, Theory of Bessel Functions.

Tables and graphs of Legendre and Bessel functions, together with summaries
of useful functional relations, will be found in:

E. JaunkE AnND F. EmpE, Tables of Functions.

EXERCISES

1. What is the potential distribution inside a spherical region bounded by two
conducting hemispheres at potentials &V /2, respectively?

2. Find the potential at points outside a spherical volume distribution of charge
in which the charge density is proportional to the distance from a diametral plane.

3. The equation of the surface of a conductorisr = a[l + 8P» (cos 0)], where
6 << 1. Show that if the conductor is placed in a uniform field E parallel to the
polar axis the surface charge density is given by

Z:Zl:?‘ﬁil [(n 4+ 1)Pat1 (cos 0) + (n — 2)Pa_y (cos B¢,

where o¢ is the induced charge density for 6 = 0.
4. A uniform field £, is set up in a medium of specific inductive capacity «.
Prove that the field inside a spherical cavity in the medium is given by

o= o9+ 0

_ 3xE,, .
T2k 1

Y

5. A conducting sphere of radius a carrying charge ¢ is placed in a uniform field
of strength Eg. Find the potential everywherc. What is the dipole moment of the
induced charge on the sphere?
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6. What is the capacity of a thin hemispherical shell? (Hint: Invert a charged
circular disk. The solution of this problem was originally due to Kelvin.)

7. A solid dielectric sphere of radius a has a sector removed so that it fits the
edge of an infinite conducting wedge of external angle «, its surface meeting the
wedge faces orthogonally. If the wedge is charged, show that the potentials
inside and outside the sphere are

a+ 27

¢in = const. m (7‘ sin 0) ’rlaCOS ZZ_P ’
nla (vl a)+1
_ ra __ wk — Da a . pwla TP
dout = const. [r et 7t D (r) ](sm 0)" " cos -

(Hint: Note that the geometry of the problem permits only a single surface har-
monic. Which is it?) (Smythe)

8. Show that the potential due to a conducting disk of radius a carrying a
charge ¢ 1s

b(r, 2) = —1_ / e F12 1o (k) s“‘k’“‘ dk
0

in cylindrical coordinates. Can you suggest other methods for the solution of
this problem?



CHAPTER 6

ENERGY RELATIONS AND FORCES
IN THE ELECTROSTATIC FIELD

Our discussion of the electrostatic field has thus far been based entirely
on a single experimental law, namely Coulomb’s law of Eq. (1-24) for the
action-at-a-distance force between two point charges. The electric field
has been introduced as an intermediate agent whose purpose is to simplify
the description of the interaction between charges. The question of the
reality of the field as an independent physical entity therefore does not
arise in these considerations. Maxwell attempted to ascribe a larger de-
gree of physical reality in a direct mechanical sense to the electric field
than will be necessary for our purpose, since the fundamental reason for
attributing physical reality to the field will not become apparent until
nonstatic effects are discussed. However, if the field is a truly valid rep-
resentation of the experimental facts it is necessary that all of the me-
chanical properties of an electrically interacting system can be described
either in terms of the sources which partake of the interaction or in terms
of the fields themselves which are produced by the sources.

This means that the detailed nature of the sources should not influence
the action of a field on a given system of charges. The description of the
electric field alone must be a sufficient description to determine what
interaction occurs if a number of charges are introduced at given points
in the field. This interaction must be formulated in terms of the field
itself, and not depend explicitly on the configuration of the charges that
produce the field.

It should therefore be possible to develop a field theory in which we can
describe the over-all mechanical properties, such as energy and force,
equivalently in terms of the charges which are the sources of the field, or
in terms of integrals over the field produced by the charges. The only
criterion for the correctness of such over-all relations when expressed in
terms of the electrostatic field shall be that the results are equivalent to
those which are obtained from a direct consideration of the action-at-a-
distance interaction of the charges responsible for the field.

6-1 Field energy in free space. Let us consider a set of charges ¢; in
free space. The work done in the course of physical assembly of these
already-created charges, which are initially located an infinite distance

95
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apart, is given by

W=13%> ¢} (6-1)
1:=-1

where ¢? is the potential produced at the position of ¢; by all the other
charges. By assembling these charges we have changed the energy of the
system, and since all of the forces are conservative, we can identify this
expression for the work of assembly with the energy of the system. This
energy must be stored somewhere. Just as in mechanics, however, the
location that one selects as the place of energy storage depends on one’s
point of view.

If, for example, we consider two masses at the ends of a compressed
spring, we have a system that possesses potential energy which will be re-
leased if the spring is allowed to expand. In the expansion the masses will
acquire kinetic energy. The physical location of the energy in this me-
chanical system in its initial condition is not necessarily in the spring.
Phenomenologically the masses may be considered to be initially in regions
of higher potential energy than they are after the expansion of the spring.
Equation (6-1) corresponds to the latter point of view. We shall now try
to transform Eq. (6-1) to an expression which would make it appear as if
the electrical energy resides in the (figuratively) “elastic” quality of the
electric field, as would be required in order to correspond to the point of
view that the energy of the mass-spring system resides in the spring.

The expression obtained by Maxwell for the energy in an electric field,
expressed as a volume integral over the field, is

U = 529 [ E? dv. (6-2)

The integral extends over all space. We shall now show that the field
energy U is, in fact, the same as the assembly work W. To show this,
let us introduce at any arbitrary field point the partial fields E;, each
being the Coulomb field of only one of the point charges ¢;. E and E? are
then given by

E = Z E;,
im1
SDILEDIDIR.
where the prime on the summation symbol indicates that the term for

which ¢ = j is omitted, since such terms are grouped separately in the first
summation. For point charges, the first sum makes an infinite contribu-

(6-3)



6-1] FIELD ENERGY IN FREE SPACE 97

tion to the integral over E? in Eq. (6-2). However, this infinite term is
independent of the relative position of the charges and therefore it must
represent the work necessary to create the charges from an arbitrary zero
point of energy. We shall therefore designate

e n
U, = 50 ; E? dv (6-4)

as the self-energy of the system. The introduction of a finite radius for
the elementary charges enables us to avoid infinite self-energy so long as
the charges are stationary, as indicated in a problem at the end of this
chapter. Later we shall find that a finite radius involves certain difficulties
when moving charges are considered.

With Eq. (6-4) the Maxwell field energy expression, Eq. (6-2), then
becomes

U= U+ 2 [Be oD b (6-5)
1=1

where _j¢; denotes the potential at any point due to all of the charges
except the 7th charge. Using the vector identity

V-(Ap) = ¢V-A+ A-Vo (6-6)

in order to perform an integration by parts, we obtain

Uv=U 9% / (V- (B:Tio)) — Tie;v - Eddo.  (6-7)

=1

Except at the position of the ¢th charge, V - E; vanishes everywhere. Hence
we may write V - E; = ¢; 6(r;) /€y, and hence

_p &Y €N~ 4090 _
U= U =93[BT a4 § R 48 69

i=1

where ¢ is Y"'¢; evaluated at the position of the ith charge, i.e., the po-
tential at ¢; due to the other charges. The surface term can be made
arbitrarily small by letting the boundary surface go to infinity, since the
fields decrease at least as the inverse second power, the potential at least
as the inverse first power, and the differential area of integration increases
only as the square of the distance. If we consider that the integral in Eq.
(6-2) extends over all of space where there is a field, then this integral,
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as a result of Eq. (6-8), reduces to
=1

The second term of this final equation is identical with the expression
(6-1) for the work of assembly of the charges from infinity, while the first
term U, is the self-energy corresponding to the energy used in the creation
of the charges themselves. The analysis shows that Eqs (6-2) and (6-9)
correspond to the same energy, but Eq. (6-2) expresses this energy as a
volume integral of an energy density €qE?/2 extending over all of space.
It is not possible to ascertain experimentally whether the energy resides
in the field or is possessed by the charges which produce the field.

6~2 Energy density within a dielectric. In the presence of a dielectric
Eq. (6-2) can under certain conditions be replaced by

U=13 / E-D dv. (6-10)

To show this, let us consider the change of energy when a small increment
of true charge 8p is added to the field. We shall assume rigid boundaries
and rigid constraints on the medium, so that no work is done on mechanical
constraints. In the case of continuous charge density the self-energy
problem disappears, and the work done is given by

oW = [¢spdv = [¢5(V -D)dv = [ev-eDan.  (@-11)
The vector theorem of Eq. (6-6) and Gauss’s theorem enable us to write

aW:[v-(qsaD)du —[6D-V¢dv
— [ (¢ 6D) - dS — / 6D - V¢ dv. (6-12)

If we drop the surface term, as we did in the derivation of Eq. (6-9), we
obtain

6W=—/6D-V¢du=[E-6de. (6-13)

This increment of work usually cannot be integrated unless E is a given
function of D. If, for example, E and D are related by a dielectric con-
stant k, which may be a function of position but not of E, then the energy
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resulting from the irtegration of the work increment from D = 0 to
D = Dis

D D E E'2
U=/ 5W=/ /E-adesz Keo 8ET) 4,
0 1] 0 2

— %/K60E2 dv = %/E-de. (6-14)

At least for the simple case, therefore, in which E and D are proportional,
Eq. (6-10) is justified.

Note that this proof of Eq. (6-10) has involved a particular virtual
process: the addition of a true charge increment to a system under rigid
constraints. Since we are dealing with conservative forces, the validity
of these relations is independent of the particular virtual process chosen.

If the medium is not isotropic, the coefficient which relates D to E is a
tensor, as already discussed in Section 2-1. That is,

D, = €gkaplis. (6-15)
Hence Eq. (6-13) must be replaced by

W = ¢ / kasEs 6E. dv. (6-16)

If k.p is independent of the field magnitude, this equation can be integrated
to the final field strength, giving

W = 529 / kesEsEa dv, (6-17)
since all field components increase proportionally. Hence Eq. (6-14) is
also valid for linear nonisotropic media.

We can deduce the symmetry of the dielectric constant tensor x.s from
Eq. (6-17). The integrand of Eq. (6-17) is

KaﬁE,gEa = Ka,sEaEls = KgaEgEa, (6—18)
where we have simply interchanged indices in the last step. Hence

f(Kaﬁ - Kﬂa)EaEﬁ dv = 0 (6—19)

for arbitrary E, and Eg, which shows that k,s = kg, unless the field energy
vanishes identically. The symmetry of the susceptibility tensor assumed
in Section 2-1 is thus proved. This proof corresponds to the general
theorem that the contracted product

AapSas (6-20)
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of an antisymmetric tensor A,s = — 4. and a symmetric tensor S,s = Sg,
vanishes identically ; an arbitrary tensor T.s can always be written as

Tug = Sas + Auty (6-21)
where
Sop = ~ep - Lo 5 Toe),  fpy= Lot Too 5 L. (6-22)

6~3 Thermodynamic interpretation of U. The assumption of a dielectric
constant x that does not change with the field and is a function only of
position [as implied in the integrations in Eq. (6-14)] implies that the
process of change of field is an isothermal process, since the dielectric
constant is usually a function of temperature. To assure isothermal
behavior, the dielectric material in question must be in contact with a
heat bath which can exchange heat with it to maintain a constant tempera-
ture. Thus we cannot equate the increment of work done, §W of Eq. (6-13),
to the increase in total energy, since heat transfers are also involved.
Equation (6-14) does, however, represent the maximum work which can
be extracted at a later time from the total electrical field energy if the
temperature is assumed constant.

Thermodynamically, the maximum work which can be obtained from
a system under isothermal conditions is the free energy F of the system,
not the total energy. This means that in the presence of dielectrics the
expression U = 1fE - D dv cannot be identified with the total energy of
the system, but can only be identified with the thermodynamic free energy.
Of course, the distinction vanishes when no materials with temperature-
dependent dielectri¢ properties are present in the field. Thus Eq. (6-13)
can be written in terms of the free-energy increment éF,

6F = [ / (E - 6D) dv] (6-23)

constant temperature
and
F:—-U—TS:—%/E-de, (6-24)

where U is the total internal energy, S the entropy, and T the absolute
temperature. Formally, in the thermodynamic sense, the electric field E
is analogous to gas pressure and the displacement D to volume; ie., E 18
the “intensive” and D the “extensive” variable.

The correct expression for the total energy can be easily derived. If
we take the differential of Eq. (6-24),

oF = sU — T 88 — S oT. (6-25)
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But according to the first law of thermodynamics, 6U — T &S = W,
where 6W is given by Eq. (6-13). Hence, for arbitrary changes in field
and temperature,

5F — —8 8T + [ (E - éD) dv. (6-26)

From Eqgs. (6-24) and (6-26)

_ [ o gk _/E'Dl_@i,
D=const"/2Ede”_ 5 x aT %

_ [ €0 2 d(Tk) _/E-Dld(Tx) )
U_F+Ts_f2E Sy = | 2o - Sadv. (6-27)

oF

S=—ﬁ

and

The heat absorbed by the dielectric during application of a field change
at constant temperature is thus
T dk

5Q=TaS=fE.aD-K-ﬁdv. (6-28)

If, for example, the specific inductive capacity has the form [see Eq. (2-44)]
k=14+X=14 (A4/T), (6-29)

with A constant, as is the case for gases composed of molecules having
permanent dipole moments, then dk/dT is less than zero, and hence
8Q < 0if 6D > 0. Thus heat is given off when the field is applied, and
conversely. If a field is applied to a heat-insulated dielectric, the tempera-
ture of the dielectric will therefore increase if dx/dT < 0.

6—4 Thomson’s theorem. From now on we shall use only the free-
energy density in our considerations, although we shall follow the conven-
tions of electromagnetic nomenclature and designate it by U instead of F.
This will enable us (in constant temperature processes) to equate changes
in the free energy directly to the mechanical work quantities responsible
for them, without making it necessary to include thermal quantities in
the energy balance. The free-energy expression of Eq. (6-10), applicable
even in the presence of dielectrics, behaves in electrical problems in the
same manner as does the chemical free energy in chemical kinetics: a
reaction will proceed until the free energy reaches a minimum value. In
the electric case, charges on a conductor will redistribute themselves in
such a way that the entire free field energy will be minimized.

We can show this directly. Let us consider a virtual process in which
charges in equilibrium on a number of conductors are displaced by an
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infinitesimal amount along the constant potential conductor surfaces in
such a way that the total charge remains unchanged. The variation of
free energy (at constant temperature) is given by

§U = f E - 6D db. (6-30)

If we apply Gauss’s theorem, we obtain as before

SU = [E-adez [(—v¢-aD>dv= [[¢v-aD— v - 5(D¢)] dv

— f¢ spdv — /¢5D~dS. (6-31)

The surface term vanishes and the integral can be broken into a sum of
individual integrals over the ith conductor; thus,

U =Y. [.qbi 5p dv;. (6-32)

If ¢; is constant over each conductor 6U will vanish, since
]_ 8p; dv; = 8q; = 0 (6-33)

because the charge on each conductor is constant. Thus the elementary
equilibrium condition that each conductor be an equipotential is equivalent
to making the free energy an extremum. This requirement is usually known
as “Thomson’s theorem.”

The term

U, = 5 (6-34)
is known as the energy density (more accurately, of course, as the free-
energy density) of the electrostatic field. It is a density in the sense that
its volume integral gives the over-all energy of the field. On the other
hand, in the same sense as it was impossible to localize the energy either
in the field or in the source charges, it is also impossible to associate energy
in a definite way with each specific volume of field in a manner which can
be verified by experiment.

In deriving the energy expression it is assumed that the medium is held
at rest and hence no work is done in motion against forces. This implies
that the virtual process of assembling the charges in the dielectrics is a
process with particular constraints. The resultant energy expression is
nevertheless general, since no nonconservative forces are involved. We
shall later consider the more general virtual process permitting mass mo-
tion; Eq. (6-10) will still be applicable, however, since the final field energy
is independent of history.
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6-5 Maxwell stress tensor. In a pure field theory it should be possible to
calculate the net force on a given volume element within a dielectric in
terms of the field conditions on the surface of the volume element. This
implies that the field is the stress-transmitting medium in the same sense
that a string tying two weights together is the medium that transmits a
force from one weight to the other. This was a point that was empha-
sized by Maxwell to bring out the importance and the physical reality of
field quantities. But, as we have seen before, we can give only an alter-
nate description of the way in which the forces act, and cannot give a
definite physical proof of the validity of the field concept as compared
with the concept of action at a distance. We must remember that the only
physical fact underlying this discussion is Coulomb’s law, the remainder
of the discussion being mathematical, and therefore we cannot expect to
obtain any physical concept regarding the mechanical interaction of
charges which will add any physical facts beyond Coulomb’s law. New
physical facts based on the field concept will arise only when time-de-
pendent effects in the present theory are further investigated in later
chapters.

If we consider that the force acting on a given volume is transmitted
across the elements of surface bounding that volume, then this transmit-
ting force can be formulated in terms of a quantity known as the stress
tensor 7. (This stress is an abstract concept, and does not depend on the
presence of matter.) The afth component T,z of the stress tensor T
is so constituted that the ath component dF, of the force dF transmitted
across a surface element dS whose component in the Bth direction is dS,
is given by

3
dF. = Y Tap dSs. (6-35)

B=1

It can be shown by the consideration of the rotational equilibrium of a
rectangular solid under surface stresses that the stress tensor T must be
symmetric.

By means of the summation convention, according to which a summa-
tion is to be carried out over indices that are repeated in any single term,
Eq. (6-35) may be written

dF, = Ta.sdSs. (6-36)

Equation (6-36) may be integrated to give the ath component of the total
force acting on a given volume:

F.= f Ts dSs. (6-37)
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If this force is to be expressible in terms of a volume force, whose ath
component is F,,, then

F. = [ T dSs = [ F,, dv, (6-38)

and hence, by Gauss’s divergence theorem expressed in tensor notation,

f et g — [ T s S, (6-39)

axﬂ

the relation between the stress tensor and the volume force is

_ 9T

Fv"‘ axg

(6-40)
Thus if we express a volume force as the tensor divergence of a certain
quantity T, then the quantity T can be identified with the surface stress
tensor 7 that gave the stress transmitted by the field across the surface
of the volume in Eq. (6-38).

The tensor corresponding to a given volume force F, is not unique, since
any additional tensor of vanishing divergence can always be added without
affecting the value of F, in Eq. (6-40).

Let us first consider the problem of identifying such a tensor in the
absence of dielectrics, i.e., let the volume force be given by

F, = pE = (Vv -D)E. (6-41)

In tensor notation Eq. (6-41) becomes

_ 2
Fva _— eOEa axﬁ
0 0k,
= € [55; (EsEs) — Eg axg] (6-42)

The first term of Eq. (6-42) is already in the form (6-40). We can trans-
form the second term in the bracket of Eq. (6-42) by noting that for the
clectrostatic field V X E = 0, i.e., dE,/dxs = 0Ez/dx,. Hence

y  (6-43)
where E is the magnitude of E. Equation (6-43) can also be written as

- v 2\ Y 1 2 . _
Eﬂ axﬁ - 2 6aﬁaxﬂ (E ) - a (2 6(1[3E > (6 44)
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Hence Eq. (6-42) is of the form (6-40) with
Top = €o(E.Eg — % 8u5E7). (6-45)

The matrix corresponding to this tensor may be written explicitly,

[%(Eﬁ — E — E3) E.E, E,E,
T = € E.E, L(E2 — E?2 — ED E,E. ’

(6-46)

This is the Maxwell electric stress tensor in the absence of dielectrics. Note
that additional terms will appear in the stress tensor if the field is not
irrotational as assumed above.

The Maxwell tensor is a symmetric tensor of the second rank and can
therefore be reduced to three components by transformation to principal
axes. The principal values of the matrix can be obtained by solving the

secular determinant:
|Tus — bagh| = O. (6-47)

The principal values of the tensor are

M= 9F2 Ny = — 2E2 (6-18)
2 2
When expressed in terms of principal coordinates the stress tensor there-

fore takes the simple form:
T=%210 —E* 0 |- (6-49)

The principal axes are so oriented that the coordinate axis corresponding
to the single root of the secular determinant, Ay, is parallel to E, while
the two axes corresponding to the double roots Az and A3 are perpendicular
to E. This fact is often expressed qualitatively by stating that the electric
field transmits a tension €,E%/2 parallel to the direction of the field and
a transverse pressure of magnitude €oE?/2 transverse to the direction of
the field.

Let us choose a coordinate system in which the z-axis is parallel to the
direction of the field, so that £, = E, = 0, and consider the stress across
a surface element, as shown in I'ig. 6-1, whose normal makes an angle 6
with the z-axis. The force will then have two components, one parallel



106 ENERGY RELATIONS AND FORCES IN ELECTROSTATIC FIELD [CHAP. 6

v — AV n
das sm(z dsSy W = dS/dS
_____ K
y > — T
i
|
Edb’ cos 0 = dS,
i U 2
| dF, = 5 E2 cos 6dS TdS - 60—2E~dS
€ .
VdF, = — 7E2 sin 6d S
Fic. 6-1. Geometry for considering F1g. 6-2. Stresses at a surface.

stresses at a surface element.

to E and the other perpendicular to E in the plane defined by E and the
normal to the surface element. The magnitudes of these forces are the
stress components given by the matrix in Eq. (6-49) multiplied by the sur-
face element components as indicated in the figure. The resultant force
on dS is the vector sum of the two force components, as shown in Fig. 6-2.
It is seen that the electric field bisects the angle between the normal to the
surface and the direction of the resultant force acting on the surface. This
construction is frequently a useful one in the graphical evaluation of the
forces on a charged region if an experimental field plot is available or, in
the analogous magnetic case to be discussed later, it is useful for the com-
putation of forces on magnetized materials, or on current-carrying con-
ductors.

In the special case of stress transmitted across surfaces either parallel or
normal to the electric field, we have the simple situation indicated in the
first two parts of Fig. 6-3, where the field transmits a pull of magnitude
1e,E? across a surface that is normal to the field and a push of magnitude
leoE? across a surface that is tangential to the field. A surface that is
oriented at 45° to the direction of the field, as also shown in Fig. 6-3,
will receive a force that acts parallel to the surface, also of magnitude
LeoE?. These relations can be demonstrated for simple cases such as the

2 %

| Al

Fig. 6-3. Stresses for fields perpendicular, parallel, and at an angle of 45°
to a surface.
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[

-

+gq
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Fic. 6-5. Lines of force for equal charges of the same sign.

attraction and repulsion between two charges of opposite or equal sign.
If we consider, for example, two charges of equal magnitude but of oppo-
site sign, then the lines of force are distributed as in Fig. 6—4. If the stress
tensor is integrated over the surfaces of a box, one of whose faces is the
plane of symmetry between the two charges and the other faces are at
infinity, the resulting expression is in agreement with the Coulomb attrac-
tion of Eq. (1-24). If we consider the two equal like charges, as in Fig.
6-5, and the same box as before, then the lines of force are parallel at the
plane of symmetry, resulting in a repulsion whose magnitude can similarly
be shown to be also in accord with the Coulomb repulsion.

6—-6 Volume forces in the electrostatic field in the presence of dielec-
trics. The force per unit volume that acts on a dielectric body when it is
under the influence of an external electrostatic field may be derived from
the (free) energy as given by Eq. (6-14).

Equation (6-14) was derived by considering a virtual process in which
true charges were added to a system of charges and dielectrics under rigid
constraints, so that no work was done against physical displacements.
We shall now consider a different virtual process, one in which the physical
coordinates of charges and dielectrics are given a virtual displacement 6x
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at each point in space, but where no external charges are added. Since we
are dealing with conservative fields, the energy expression (6-14) can still
be used although it was derived in terms of another virtual process. The
variation in free energy U when a unit volume of the dielectric undergoes
a virtual displacement 6x is given in terms of F,, the force per unit vol-
ume, by*

U = — [ F,- ox dv. (6-50)

In view of the fact that the magnitude of the virtual displacement &x is
quite arbitrary, we can identify F, in Eq. (6-50) with the true volume
force. This information may be put in a different way : if u is an arbitrary
velocity field within a dielectric, then the rate at which energy is lost by
the field is given by

dU
— = —/F,,- u dv, (6-51)

where F, again represents the volume force.

Let us now consider the energy change due to both a change dp in true
charge distribution and a change 8k in specific inductive capacity caused
by the displacements. From Eq. (6-14),

%—6/E-de

= —1—/D2 6(1/k) dv + /E oD dv
260

oU

I

(6-52)

— _529 E? axdv+fE-aDdu. (6-53)

Here the first term represents the energy change caused by the change in
dielectric constant due to the virtual displacements, and the second term
corresponds to the energy change caused by the displacement of sources.
The second term can be reduced in the usual way by partial integration:

/E-andvz—/vd,-andv (6-54)
— /¢V-(6D)dv= [¢5V-de

— / ¢ 80 dv. (6-55)

* 1t is assumed here that the virtual velocities u corresponding to the virtual
displacements 6x are sufficiently slow so that the process is both reversible and
isothermal. Under these conditions the change in free energy can be equated to
the mechanical work done.
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Hence Eq. (6-53) becomes

dd(t] = <¢~ — —E2 a") dv. (6-56)

To arrive at an expression for F,, we must express the time derivatives
dp/ot and 9dk/dt of Eq. (6-56) in terms of the arbitrary velocity field u.
This can be done by means of the hydrodynamic equations of continuity,

v - (pu) + - =0, (6-57)

- () + om = 0, (6-58)

which represent respectively the conservation of charge and mass if p,, is
the mass density just as p is the charge density. To calculate dk/dt we
must associate the change in dielectric constant with the velocity flow.
Since there is net transport of material in a velocity field, the change in
dielectric constant can be associated with changes in geometry only if we
consider the time history of a volume element that is moving with the -
velocity u. The total derivative of a particular quantity, such as k or pp,
when evaluated so that the observation point for this derivative moves
with a chosen volume element in a velocity field, is known as the substan-
tial derivative, and is related to the partial derivatives and to the velocity
u by
Dk 0k dx | Ok 9y n oKk 0z

0K
Dt oot Tayar é;a‘f+——(v">'“+a7' (6-59)

Hence the desired partial derivatives are

0K Dk
5 = TVRuT Ty
(6-60)
0pm me

If there is a dielectric equation of state, i.e., a relation which gives the de-
pendence of the dielectric constant on the density, such as the Clausius-
Mossotti relation of Eq. (2-39), then the substantial derivative of the
dielectric constant can be expressed in terms of the substantial derivative
of the density by

Dk dk me

Dt~ dp, Dt (6-61)

where dk/dp, is a known property of the dielectric. The assumption
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that the dielectric constant depends on the mass density alone includes,
of course, the assumption that the virtual processes are isothermal. The
factor Dp,./Dt of Eq. (6-61) may be evaluated with the aid of Eq. (6-60)
and the equation of continuity, so that

Dk dk (apm + vp u)

Dt dpm
dk dk
= Do [(Vom-u — V- (ppu)] = — d—p—Pm(V u). (6-62)
Therefore
K dk
= EB;”"‘(V ‘u) — (VK) - u. (6-63)

Equation (6-56) may now be written

; g ;
.§=]va@m+°WfHMvw+(%ﬁw)4w
(6-64)

The integrand must be brought into the form of the dot product of an
expression and the velocity u if we are to identify the volume force F,.
The first term may be written in this form if we use Eq. (6-6) to integrate
by parts and assume that the surface boundary is outside of the dielectric
and therefore outside the region of charge density. The result is

Similarly, the second term can be put into the desired form if we drop a
surface term:

€ (g2, K o g _ (zﬁ_) .
5 Epmdpmv udy = 5 v Edpmpm udv. (6-66)

Equation (6-64) therefore becomes
@_/_ €0 o _@(2ﬂ_ﬂ i}
;= [ pE—}—zEVK 2V E pmpm udv, (6-67)
and by a comparison of Egs. (6-67) and (6-51) we see that
_ ,E — S g2 o g (g2 % _
F,=p 2EVK+2V(E dpmpm> (6-68)

is the volume force.
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The first term in Eq. (6-68) is the ordinary electrostatic volume force
in agreement with Eqs. (1-23) and (6—41). The second term represents a
force which will appear whenever an inhomogeneous dielectric is in an
electric field. The last term, known as the electrostriction term, gives a
volume force on a dielectric in an inhomogeneous electric field. Note that
the magnitude of the electrostriction term depends explicitly through
dk/dp., on the electrical equation of state of the material. It is interesting
to note that this term will never give a net force on a finite region of
dielectric if we integrate it over a large enough portion of dielectric so that
its extremities are in a field-free region. Under this condition the electro-
striction term, being a pure gradient, will integrate out. It is for this reason
that the term is frequently omitted, since in the calculation of total forces
on dielectric bodies it usually does not contribute. In cases where it can
be omitted, however, an incorrect pressure variation within the dielectric
is obtained, even though the total force is given correctly.

6-7 The behavior of dielectric liquids in an electrostatic field. Let us
consider the behavior of an uncharged dielectric liquid resulting from the
volume force produced by -an electrostatic field. If p is the mechanical
pressure in the liquid when in equilibrium with the electric volume force
F,, then the mechanical volume force —Vp which is set up as a result of
the pressure gradient is equal and opposite to F,. In other words, the
equilibrium condition is that F, 4+ (—Vp) = 0, so that F, = Vvp. Then
by Eq. (6-68) the pressure gradient at any point within the liquid is given
by

eoE2 €0 2 dr )
vp =F, i VK + 5] v (E Om . ) (6-69)
This equation can be written as
_ €oPm 2 jd_"_ ) _
Vp = 5 v (E dpm> (6-70)

On integrating this, assuming that there is a definite equation of state for
the liquid, we obtain

by .
-l i)
—— = JE°"-—| —|E°5—]|¢- 6-71
/pl Pm 2 dpm 2 dpm i1 (6=71)
This equation denotes the important fact that the pressure within the
dielectric liquid is a unique function of the electric field at a given point,
the function depending on the electrical and mechanical equation of state

of the liquid. Equation (6-71) also indicates that the net pressure differ-
ence (resulting from electrical forces) between two points outside the region
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Fic. 6-6. Assumed transition of « from a dielectric to vacuum.
of the electric field in a dielectric liquid will vanish. A situation that in-

volves boundaries will be analyzed later.
If the liquid is incompressible, Eq. (6-71) reduces to

_ _ Pm€o| 2 dK ? .
from which the magnitude of the pressure difference can be estimated
numerically in terms of the Clausius-Mossotti relation or a similar equa-
tion of state. If the Clausius-Mossotti relation [Eq. (2-39)] is valid, Eq.
(6—72) for an incompressible fluid becomes

_ _ No€opme (12 sz | €E? (k — 1)(k + 2)]2. e

As an example of the stresses that act across the boundary between two
dielectrics, let us take the case of a boundary between a dielectric of
specific inductive capacity x and a vacuum. We assume that the transition
from dielectric to vacuum takes place in a continuous manner, as indicated
by Fig. 6-6. For simplicity, let the problem be a two-dimensional one
involving a pair of capacitor plates that dip into a dielectric liquid, such
as those shown in Fig. 6-7. If the net pressure difference from A to D is

MMM s

AN

N

TField free

D=

F1c. 6-7. Two capacitor plates dipping into a liquid dielectric. The field free
point D may be anywhere in the dielectric, well away from the capacitor. It is
indicated as a surface point to facilitate comparison with the hydrostatic pressure.
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all that is desired, it suffices to integrate the one term of Eq. (6-68) that
is proportional to the gradient of the dielectric constant. The resultant
electrical pressure difference, which has to be balanced by hydrostatic
effects, is

D
pa — Pp = Ezgf E*Vk - dx, (6-74)
A
B
= 20 / E?Vk - dx, (6-75)
2 Ja

since the integrand is different from zerc only on the boundary A — B.
Hence

D
U R ]
P4 ’pD——zfA (Et+En)dxdx. (6-76)

If the boundary conditions, Eqgs. (2-15) and (2-18), on the normal and
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