Sábado, 27 de Junho de 2009

Matéria Escura

Apesar dos esforços dos astrônomos, grande parte da matéria do Universo continua a escapar às suas observações. E não sabemos nem mesmo do que ela é feita
por Patrizia Caraveo e Marco Roncadelli

Deformação gravitacional: imagem de um quasar distante, multiplicada pelo efeito de lente gravitacional conhecido como "cruz de Einstein"
Para entender como e do que é feito o Universo, os astrônomos devem fazer cuidadosos recenseamentos dos objetos celestes procurando medir a sua distância e atribuir-lhes uma massa. Nessa tarefa são ajudados pela maravilhosa simplicidade das leis da física, que supomos serem aplicáveis a todo o Universo. As surpresas, por sorte, logo nos lembram que estamos muito longe de ter claras as idéias. Se pensarmos que o estudo do cosmo por meio da radioastronomia, óptica, raios X e gama possa nos fornecer um quadro completo do nosso Universo estaremos cometendo um erro grosseiro. Há décadas sabemos que a matéria luminosa - aquela que "vemos" porque emite radiação eletromagnética, ou seja, luz, ondas de rádio, raios X e gama - é apenas uma parcela insignificante de toda a matéria que exerce uma função gravitacional. Este é o famoso problema da "matéria escura", um dos desafios mais estimulantes da astrofísica atual.

Matéria escura é certamente um nome evocativo, uma vez que estamos falando de algo cuja natureza é desconhecida e de difícil detecção. Da mesma forma que os buracos negros, a matéria escura escapa às nossas observações diretas. Sabemos com certeza que existe somente porque vemos os seus efeitos sobre a matéria luminosa.

Assim, começamos por nos perguntar como é possível nos darmos conta da existência da matéria escura. A resposta não é unívoca, dado que são aplicadas metodologias diversas dependendo dos objetos a serem considerados. Algumas delas serão descritas a seguir, mas queremos ressaltar desde já que parte do que diremos baseia-se em uma descoberta de Christian Doppler. Em 1842 ele observou que o som emitido por uma fonte em movimento mostra-se, a um observador parado, em uma freqüência superior quando o objeto se aproxima e inferior se o objeto se distancia. É o famoso efeito Doppler, válido para qualquer fenômeno ondulatório, do apito de um trem em alta velocidade à radiação eletromagnética. Se aplicado às linhas presentes nos espectros dos objetos celestes, ele permite determinar a velocidade da fonte de radiação em relação a nós. Mas vamos proceder por ordem, examinando em primeiro lugar as galáxias individualmente para, em seguida, passar ao conjunto das galáxias e portanto ao inteiro Universo observável.

Em uma primeira aproximação, a astronomia calcula a massa de uma galáxia com base em sua luminosidade: galáxias mais luminosas contêm mais estrelas e portanto são mais maciças do que as menos luminosas. Tem-se assim uma medida direta da massa luminosa das galáxias. Existem, porém, outros métodos mais gerais para avaliar a massa total de uma galáxia: eles exploram o movimento de rotação que se estende a todas as suas estrelas, típico das "galáxias em espiral". A exemplo dos planetas do sistema solar, as estrelas e nuvens de gás que compõem essas galáxias são animadas por um movimento de rotação e descrevem órbitas mais ou menos circulares em torno do centro. Nesse movimento, a velocidade de cada estrela depende, além da distância do seu centro, da parcela de massa galáctica presente no interior da sua órbita. Portanto, o estudo sistemático desses movimentos nos permite medir a massa total das galáxias em espiral. O gráfico das velocidades medidas em função da distância do centro é chamado de curva de rotação galáctica.

Andrômeda (esquerda), é um exemplo de galáxia espiral. A curva de rotação (acima) mostra como o valor da velocidade cresce até um máximo, e depois diminui. Contrariando as expectativas, procedendo em direção à margem externa, a velocidade se estabiliza sobre um valor constante. O fenômeno pode ser explicado pela suposição de existência de matéria não-luminosa
Paradoxo galáctico

Examinando os espectros de muitas estrelas de uma galáxia em espiral, selecionadas de modo a que tenhamos distâncias do centro progressivamente crescentes, esperamos observar que a curva de rotação inicialmente cresça, à medida que aumenta a distância do centro para, a seguir, uma vez englobada toda a massa da galáxia, diminuir.

Em outros termos, esperamos que as estrelas nas bordas da galáxia se movam mais lentamente do que as mais internas, numa analogia com o que ocorre com os planetas do sistema solar. Entretanto, a natureza nos reserva uma surpresa: após um crescimento linear - em correspondência com a região central - a curva de rotação se estabiliza em um valor constante à medida que aumenta a distância do centro.

Apesar de ser impossível encontrar duas galáxias com curvas de rotação idênticas, é surpreendente constatar que praticamente todas as curvas de rotação medidas têm o mesmo andamento qualitativo. O que se esconde atrás desse comportamento?

Para explicar a curva de rotação plana das galáxias em espiral devemos supor que nas suas regiões externas exista uma significativa quantidade de matéria não-luminosa , em condições de conpensar a diminuição da velocidade que esperávamos encontrar apenas da matéria luminosa. Comos se distribui a matéria escura? Infelizmente as observações não nos permitem dar uma resposta unívoca. Temos de proceder às avessas, supondo diversas distribuições de matéria escura e estudando o andamento das correspondentes curvas de rotação. Obtemos o comportamento plano supondo que o componente luminoso de uma galáxia em espiral esteja cercado por um halo esferoidal de matéria escura. No caso da Via Láctea - que é uma típica galáxia em espiral brilhante - a matéria escura é estimada em cerca de 1012 massas solares, que deve ser confrontada com uma massa luminosa de 7 x 1010 massas solares. Isso significa que a quantidade de matéria escura é pelo menos 10 vezes superior àquela da matéria luminosa.


A existência de matéria escura nos conjuntos de galáxias é conhecida desde 1933, quando Fritz Zwicky estudou os movimentos no conjunto de galáxias que leva o poético nome de Cabeleira de Berenice. A sua estratégia pode ser assim resumida: em um sistema auto-gravitante isolado (como um conjunto) vale o teorema do virial, segundo o qual a energia potencial gravitacional do sistema (proporcional à sua massa total) deve ser igual ao dobro da energia cinética total dos constituintes (as galáxias, no caso dos conjuntos). Isso pode ser entendido de modo intuitivo: se a energia cinética dominasse, o sistema se expandiria, ao passo que - no caso contrário - tenderia a colapsar; uma condição de equilíbrio só é possível se a energia cinética for a metade da energia potencial. A velocidade das galáxias que compõem o conjunto é calculável sobre a base do deslocamento Doppler das linhas presentes nos espectros galácticos; motivo pelo qual a estimativa da massa total é imediata.

No caso da Cabeleira, encontramos uma massa total de 9,6 x 1014 massas solares, contra uma massa luminosa de 1,4 x 1013 massas solares. Portanto, a quantidade de matéria escura é 60 vezes maior do que a da matéria luminosa.

Janelas de observação

Pode-se chegar à mesma conclusão por um caminho diferente, explorando a emissão de raios X dos conjuntos. Nos anos 70 descobriu-se que os conjuntos de galáxias emitem raios X com energia da ordem de 10 quiloeletrovolt. O estudo do espectro da radiação X também esclareceu a origem dessa emissão. Trata-se da radiação de Bremsstrahlung (literalmente "radiação de freio") que os elétrons de um gás ionizado emitem quando são acelerados (desacelerados) do campo eletrostático de um íon do gás. Essa descoberta demonstrou que os conjuntos de galáxias contêm também um gás ionizado - na temperatura de cerca de 10 milhões de graus celsius - cuja massa resulta ser de cerca de 1014 massas solares, portanto bem maior do que a massa luminosa. Mas essa descoberta tem uma implicação ainda mais importante. A partir do estudo da emissão X é possível concluir que a quantidade total de matéria presente no conjunto está em conformidade com as estimativas obtidas usando o teorema do virial.

Uma confirmação posterior foi obtida recentemente através do efeito da lente gravitacional. Segundo a teoria einsteiniana da gravidade, uma distribuição de massa provoca a curvatura do espaço. A propagação da luz assim é distorcida na presença da matéria, que age como uma lente, multiplicando, aumentando ou deformando a imagem da fonte. Após os primeiros estudos de fontes puntiformes, cujas imagens resultavam multiplicadas pela presença de uma galáxia sobre a linha de vista, foram observadas distorções da imagem de uma fonte extensa. As galáxias são deformadas e o estudo da deformação permite determinar a massa da lente gravitacional. Imagens de conjuntos de galáxias tornaram evidente a presença de diversas galáxias distorcidas. Trata-se de galáxias de fundo, muito mais distantes de nós do que o conjunto em questão. A sua luz é refletida pelo conjunto que encontra no seu caminho, o que permite que se tenha uma estimativa da massa total de muitos conjuntos.

Conforto entre a curva de rotação medida da Via Láctea (ao lado) e a que se esperaria se a galáxia fosse constituída somente de matéria visível. A velocidade do Sol, neste caso, seria de apenas 160 quilômetros por segundo. A matéria não- luminosa, responsável por esta discrepância, é estimada em 1012 massas solares, contra as 7 x 1010 massas solares da matéria luminosa
Informações importantes sobre quantidade e qualidade da matéria escura são obtidas pelo estudo das propriedades globais do Universo. Devemos, portanto, fazer uma breve incursão no campo da cosmologia, utilizando o modelo cosmológico standard que emerge da teoria einsteiniana da gravidade sob a hipótese de que o espaço seja homogêneo e isótropo. Evidentemente essas propriedades referem-se a observações efetuadas em escala cósmica, maiores, em grande medida, que as dimensões de um conjunto de galáxias.

Espaço curvo

Segundo o modelo cosmológico standard, o Universo é um espaço com curvatura constante, que pode se expandir ou contrair durante a sua evolução. Mas se o espaço é homogêneo e isotrópico, não pode existir nenhum "centro do Universo" em relação ao qual ocorra a expansão ou contração. Este aparente paradoxo pode ser compreendido se imaginarmos que o Universo é semelhante à superfície de um balão que pode ser inflado ou esvaziado. A superfície externa do balão é o análogo bidimensional de um espaço com curvatura constante positiva, enquanto a do seu interior corresponde a um espaço de curvatura negativa.

O Universo se expandiu desde a sua origem com o Big Bang, ocorrido por volta de 15 bilhões de anos atrás; e essa expansão se manifesta no movimento de distanciamento recíproco das galáxias, descoberto por Edwin Hubble, em 1929. No âmbito do modelo cosmológico standard, a expansão cósmica é sempre desacelerada, em virtude da atração gravitacional entre os objetos que o compõem.

Tanto a geometria do Universo, quanto a sua evolução dependem da quantidade de matéria que ele contém. É conveniente expressar a correspondente densidade cósmica média em termos do parâmetro de densidade cósmica ?, definido como a relação entre a densidade medida e a chamada "densidade crítica", característica de um Universo com curvatura nula, ou seja descrito pela geometria euclidiana que bem conhecemos. Se a densidade média é baixa em relação à densidade crítica, temos ? <> 1: a curvatura é positiva e, a partir de um certo momento, o Universo começará a se contrair, até atingir um estado singular simétrico ao Big Bang. Uma terceira possibilidade corresponde ao caso ? = 1. Neste caso a densidade média é exatamente igual à crítica: então o Universo é espacialmente plano - ou seja, euclidiano - e a taxa de expansão se reduzirá progressivamente a zero.

A existência de matéria escura foi sugerida, em 1933, pelo astrônomo suíço Fritz Zwicky em aglomerados galácticos distantes como o da Cabeleira de Berenice
Quanta matéria existe no Universo?

Começamos recenseando a matéria luminosa. Trata-se de átomos semelhantes àqueles dos quais somos feitos, constituídos de prótons e elétrons, tecnicamente chamados de bárions. A densidade dos bárions luminosos corresponde a um valor de ? não superior a 0,005. Então vimos que a matéria escura exerce um papel preponderante tanto ao nível das galáxias quanto dos seus conjuntos. Temos, portanto, que encontrar uma estratégia para avaliar a densidade de toda a matéria, independentemente do fato de "vê-la" ou não.

O estudo da radiação cósmica de fundo, que permeia o Universo como resto fóssil do Big Bang, nos oferece a possibilidade de medir ?. Só recentemente foi alcançada uma precisão instrumental capaz de decodificar a grande quantidade de informações que a radiação cósmica de fundo nos oferece sobre as propriedades globais do Universo. Particularmente os dados reunidos pela miss ão Boomerang implicam ? = 1. Trata-se de um resultado de importância extraordinária, porque de um lado nos informa que vivemos em um Universo euclidiano e, do outro, que a matéria luminosa é insignificante em relação à matéria invisível. Os mesmos dados também podem ser utilizados para avaliar a densidade de todos os bárions: ela corresponde a um valor de ? igual a cerca de 0,05 (este resultado é confirmado pela teoria de nucleo-síntese fundada no modelo cosmológico standard).

A conclusão é perturbadora: de um lado, 95% da massa do U niverso é constituída de matéria escura não bariônica. Do outro, 90% dos bárions são escuros. Qual a forma assumida pelos bárions escuros? Mas, principalmente, do que é feito o resto do Universo, ou seja, a maior parte da matéria? Trata-se de um gravíssimo golpe ao antropocentrismo.

Quatro séculos atrás fomos obrigados a aceitar que não estamos no centro do Universo. Agora descobrimos que somos feitos de uma matéria que constitui minúscula parcela do Universo.

Mapa mostra a distribuição de aproximadamente 2 milhões de galáxias numa região equivalente a 10% de todo o céu, próxima ao Pólo Celeste Sul
WIMPs e quinta-essência

Um constituinte da matéria escura não bariônica são os WIMPs (ver box na página 31). A sua existência é necessária para explicar a formação das estruturas cósmicas, como as galáxias e os seus conjuntos. Por isso é natural supor que a matéria escura presente nos halos galácticos e nos conjuntos de galáxias seja formada principalmente por WIMPs, além de bárions escuros. É possível demonstrar que, em um cenário desse tipo, ? vale cerca de 0,3: os WIMPs são mais abundantes que os bárions, mas não bastam para tornar o Universo euclidiano.

A solução para este dilema seria, aparentemente, banal: bastaria imaginar que os WIMPs faltantes estivessem espalhados no espaço cósmico. Na verdade - como às vezes acontece - a natureza é mais fantasiosa que aqueles que a estudam, porque existem razões para se considerar que os WIMPs não esgotam toda a matéria não bariônica. Um estudo sobre as propriedades globais do Universo baseado na observação de uma amostra de estrelas extremamente distantes (para serem visíveis devem ser muito brilhantes, sendo as escolhidas denominadas supernovas o tipo Ia) mostrou que o universo atual está se expandindo de modo acelerado.

À primeira vista parece que estamos diante de um paradoxo, porque sabemos que no âmbito do modelo cosmológico standard a expansão cósmica é necessariamente desacelerada, devido à mútua atração gravitacional exercida pela matéria nele contida.

Devemos talvez concluir que o modelo cosmológico standard esteja errado? A situação é menos dramática do que pode parecer. Pode-se "salvar" o modelo - com os seus extraordinários sucessos - presumindo a existência de um novo tipo de matéria escura difundida no Universo, desde que ela possua propriedades radicalmente diferentes daquelas que atribuímos à matéria ordinária. Não se sabendo bem do que se trata, foi chamada com o nome aristotélico de "quinta-essência". Tanto os comuns bárions quanto os WIMPs se caracterizam por uma pressão positiva: se forem colocados no interior de um pequeno balão, este tenderá a se expandir sob o efeito da pressão correspondente. Porém, se o objetivo for explicar a aceleração do Universo, é necessário que a quinta-essência se comporte de modo oposto: se fosse encerrada em um pequeno balão, este tenderia a se contrair. Em outros termos, a quinta-essência deve ter uma pressão negativa. De fato, pode-se demonstrar que essa pressão dá lugar a uma "gravidade repulsiva" que, portanto, acelera a expansão cósmica. O estudo das supernovas Ia produz também um resultado quantitativo: a contribuição da quinta-essência à ? é de cerca de 0,65. Agora o valor de ?, obtido pela soma das contribuições devidas aos bárions, aos WIMPs e à quinta-essência, é de 0,05 + 0,3 = 0,65, ou seja, justamente 1, em conformidade com o resultado da missão Boomerang. Infelizmente, não sabemos mais nada sobre a natureza da quinta-essência.

Visão artística mostra o telescópio espacial Hubble apontado para o centro da galáxia espiral NGC 4321 semelhante à Via Láctea
Bárions escuros e raios gama

Por fim, vamos nos dedicar à natureza da matéria escura bariônica, a qual - apesar de menos exótica do que os WIMPs e da quinta-essência - não é menos interessante e elusiva.

Apesar de terem sido levantadas diversas hipóteses quanto à sua composição, a mais natural é que se trate de estrelas ou nuvens de gás presentes nos halos galácticos, que não conseguimos "ver" porque a radiação emitida é muito fraca.

Uma classe de candidatas compreende as estrelas ordinárias no final da sua fase evolutiva, tais como as estrelas anãs brancas, as estrelas de nêutrons e os buracos negros.

Estudos recentes, porém, excluíram essa possibilidade: se assim fosse, os halos galácticos conteriam uma quantidade excessiva de "metais" (elementos mais pesados que o hélio) produzidos durante a evolução estelar. O problema não se apresenta se supormos que a matéria escura bariônica seja formada por "anãs marrons": corpos celestes com massa pouco inferior a um décimo da massa solar; muito pequenos para que as reações termonucleares, que tornam luminosas as estrelas ordinárias, escureçam. Portanto, não existe modo de observar as anãs marrons. O seu mecanismo de formação implica que elas estejam reagrupadas em conjuntos escuros, que também contêm gás frio - principalmente hidrogênio molecular - sob a forma de nuvens. É notável que a teoria standard, ao explicar a formação dos conjuntos globulares (aglomerados esferoidais de centenas de milhares de estrelas), também anuncie a existência desses conjuntos escuros na região mais externa dos halos galácticos, justamente onde sabemos que deva se encontrar a matéria escura.

Imagem em infra vermelho da galáxia espiral Whirpool, acompanhada de sua galáxia-satélite, a NGC 5195, a 20 milhões de anos-luz de distância
Como fazer para detectar a sua presença? Na primeira metade dos anos 90, a descoberta do efeito de microlente gravitacional parecia oferecer o instrumento ideal para descobrir as anãs marrons presentes no halo escuro da Via Láctea. Também neste caso, a base do fenômeno reside na deflexão da luz que se produz quando a anã marrom cruza a linha visada de uma estrela puntiforme de fundo. Mas- ao contrário do que ocorre com as galáxias - as imagens múltiplas estão muito perto para serem observadas individualmente; a sua sobreposição, entretanto, provoca uma amplificação da luminosidade da estrela que está sendo examinada. Apesar de os eventos de microlente terem sido efetivamente observados, a sua interpretação se mostrou mais complexa que o previsto. Seguramente as anãs marrons não esgotam a matéria escura do halo, que presumivelmente também contém nuvens de gás bariônico frio.

As miragens gravitacionais podem não ser a única arma à disposição dos caçadores de matéria escura bariônica. Na verdade, as nuvens de gás frio facilmente escapam aos radioastrônomos, mas não podem evitar que os prótons de alta energia - presentes nos raios cósmicos - produzam raios gama no choque com os prótons dos seus núcleos. Se estas nuvens fossem responsáveis por uma parcela não desprezível em relação à matéria escura presente no halo galáctico, a intensidade da sua emissão gama deveria ser detectável com os instrumentos atuais. A esse respeito é importante ressaltar que a limitada resolução angular dos reveladores gama não permite distinguir a emissão proveniente de nuvens reagrupadas em conjuntos escuros de um fundo difuso. Por outro lado, a análise estatística de alto nível pode permitir que se determine se um fluxo gama provém do halo galáctico ou tem origem extragaláctica. Em 1998 essa análise foi feita sobre a emissão gama observada pelo revelador EGRET a bordo do satélite CGRO lançado pela NASA. O resultado parece indicar que se trata, efetivamente, de uma emissão devida ao halo galáctico, mas em casos como estes a prudência é obrigatória.

Serão as próximas missões de astronomia gama a nos dizer quantos destes raciocínios estão corretos. Primeiro decolará a missão italiana AGILE e a seguir GLAST, um instrumento muito ambicioso, no qual a Itália tem um papel importante. Estudando os seus dados, espera-se que a matéria que não vemos se torne um pouco menos obscura.
Habitantes fugidos do universo
As WIMPs (Weakly Interacting Massive Particles) são as novas partículas elementares prognosticadas por várias extensões do modelo de Glashow-Weinberg-Salam, que descreve as interações fortes, fracas e eletromagnéticas entre partículas elementares.

A classe mais promissora desses modelos é formada pelas teorias de supercorda. Devido à sua fraca interação com a matéria ordinária, as WIMPs presentes na Via Láctea são de difícil detecção.

Além disso, o seu efeito no interior de um revelador pode ser facilmente confundido com a interação produzida pelos nêutrons dos raios cósmicos. Com a finalidade de eliminar esse inconveniente, as experiências são feitas sob uma montanha ou embaixo da terra. Uma dessas experiências - denominada DAMA e atualmente em curso no Laboratorio Nazionale del Gran Sasso do Istituto Nazionale di Fisica Nucleare (INFN) -- observou um sinal consistente com o que se espera das WIMPs.

Entretanto, somente após uma eventual confirmação por parte de outras experiências (algumas das quais serão realizadas no Gran Sasso) saberemos se as WIMPS foram efetivamente descobertas. Um método indireto para a revelação das WIMPs baseia-se na identificação de partículas nas quais elas se aniquilam, como nêutrons de alta energia, anti-prótons, pósitrons e raios gama. Finalmente, deve-se dizer que o método conceitualmente mais simples de demonstrar a existência das WIMPs é o de produzi-las em laboratório. Mas para isso é preciso esperar que entre em função o Large Hadron Collider do CERN de Genebra, que não estará em operação antes de 2006. Deve-se ressaltar que esta última estratégia não substitui as experiências subterrâneas, porque a revelação in loco continua sendo a única maneira para conhecer a relevância astrofísica das WIMPs.
Resumo
- A matéria luminosa, que emite radiação eletromagnética, é apenas uma parcela insignificante de toda a matéria presente no Universo.

- Estudando as galáxias em espiral, observa-se que a velocidade de rotação das estrelas situadas nas partes externas é maior que o previsto. Isto só se justifica supondo que nessas regiões exista uma grande quantidade de matéria não-luminosa.

- A pesquisa dos conjuntos de galáxias também confirma - tanto pela espectroscopia óptica, quanto pela observação dos efeitos de lente gravitacional - a presença de matéria que escapa à observação direta.

- Segundo as observações da missão Boomerang, o parâmetro que mede a densidade cósmica deveria ser igual a 1, mas a matéria ordinária (luminosa ou não) participa apenas com 5%.

- Os astrônomos propuseram diversos candidatos como possíveis constituintes da matéria escura: entre eles estrelas não-luminosas, como as anãs marrons, as evanescentes WIMPs e uma exótica forma de matéria denominada "quinta-essência".

Fonte: Sc Am Br

Marcadores: , , ,

Máquina do Tempo

Como construir uma máquina do tempo
Não é fácil, mas também não é impossível
por Paul Davies

O gerador buraco de minhoca/rebocador foi imaginado pelo artista futurista Peter Bollinger. Esta pintura descreve um gigantesco acelerador de partículas espacial capaz de criar, aumentar e mover o buraco de minhoca para ser usado como máquina do tempo
Viagens no tempo são um tema popular da ficção científica desde que H.G. Wells escreveu A Máquina do Tempo, em 1895. Mas esses deslocamentos são possíveis? Está dentro das possibilidades do homem a construção de uma máquina capaz de transportá-lo para o passado e o futuro?

Durante muitas décadas as viagens no tempo ficaram fora dos limites da ciência mais respeitável. Mas, nos últimos anos, o assunto começou a ser discutido com freqüência cada vez maior pelos físicos teóricos. Em parte, eles fazem isso para se distrair - é divertido pensar sobre viagens no tempo. Mas há um lado sério. Compreender a relação entre causa e efeito é parte das tentativas para a formulação de uma teoria unificada para a física. Se as viagens do tempo forem possíveis, mesmo em princípio, a natureza dessa teoria unificada será drasticamente afetada.

Começamos a entender melhor o tempo depois que Einstein formulou suas teorias da relatividade. Antes do aparecimento dessas teorias, considerava-se o tempo como absoluto e universal. Era igual para todos, mesmo se as circunstâncias físicas fossem diferentes. Na teoria da relatividade especial, Einstein propôs que o intervalo entre duas etapas depende da maneira como o observador se desloca. Isso é crucial.

Quando dois observadores se movem de maneiras diferentes, experimentam durações diferentes.


Descreve-se este efeito freqüentemente com o chamado "paradoxo dos gêmeos". Vamos dizer que João e Maria sejam irmãos gêmeos. Maria viaja numa nave em velocidades altíssimas até uma estrela e regressa à Terra. João continua em casa. Para Maria, a viagem durou um ano. Mas, quando ela retorna, descobre que se passaram dez anos na Terra. O seu irmão está nove anos mais velho que ela. João e Maria não têm mais a mesma idade, apesar de nascidos no mesmo dia. Este exemplo, de certa maneira, mostra uma viagem no tempo, mesmo limitada. Maria deu um salto de nove anos no futuro da Terra.

JET LAG

Este efeito, conhecido como dilatação do tempo, ocorre sempre que dois observadores se movimentam um em relação ao outro. No dia-a-dia não observamos grandes variações, porque o efeito só é perceptível quando o movimento ocorre em velocidades próximas à da luz. Nas velocidades dos aviões comerciais, a dilatação do tempo, numa viagem normal, corresponde a alguns poucos nanossegundos, o que não é suficiente para inspirar romances de ficção científica. De qualquer maneira, os relógios atômicos têm precisão suficiente para registrar a mudança e confirmam que o movimento realmente afeta o tempo. Assim, a viagem ao futuro é um fato comprovado, embora ainda não em grandes proporções.

Para observar saltos no tempo verdadeiramente impressionantes, é preciso olhar além do domínio da experiência normal. Partículas atômicas podem ser empurradas para velocidades próximas à da luz nos grandes aceleradores. Algumas dessas partículas, como os múons, têm relógios internos e decaem com uma meia-vida bem definida. É possível observar múons em velocidades altíssimas nos aceleradores decaindo em câmera lenta, o que confirma mais uma vez a teoria de Einstein. Da mesma maneira, raios cósmicos também apresentam saltos espetaculares no tempo. Essas partículas se movem em velocidades tão próximas da luz que, para o ponto de vista de seus relógios internos, atravessam a galáxia em alguns segundos, embora para a referência da Terra pareça levar milhares de anos. Se não houvesse dilação do tempo, essas partículas nunca chegariam aqui.

A velocidade é uma maneira de saltar no tempo. Mas existe outra: a gravidade. Na teoria da relatividade geral, Einstein sugeriu que a gravidade faz com que o tempo escoe mais devagar. Os relógios andam um pouco mais depressa no sótão que no porão, que está mais próximo do centro da Terra e, portanto, mais no interior do seu campo gravitacional. De acordo com o mesmo princípio, os relógios andam mais depressa no espaço que no solo. O efeito é mínimo, mas já foi confirmado com o uso de relógios de altíssima precisão. Aliás, ele é levado em conta no Sistema de Posicionamento Global (GPS). Se não fosse, o fenômeno levaria motoristas, marinheiros e mísseis teleguiados a cometer erros de quilômetros no caminho para seus destinos.
Na superfície de uma estrela de nêutrons a gravidade é tão intensa que o tempo corre cerca de 30% mais lentamente, em relação à Terra. Visto dessa estrela, um fato pareceria acontecer com a velocidade fast-forward de um aparelho de vídeo. O buraco negro apresenta o máximo em termos de distorção do tempo. Na superfície do buraco, o tempo parece estar parado em relação à Terra. Isso significa que se você cair num buraco negro, de uma distância pequena, toda a eternidade passará diante de seus olhos no curto espaço que atravessará para atingir a superfície. A região no interior do buraco negro está além do extremo do tempo, no que diz respeito ao universo de fora. Se um astronauta conseguisse chegar bem perto de um buraco negro e voltar inteiro - uma possibilidade muito difícil, para não dizer suicida - daria um salto muito além no futuro.

SOLUÇÃO DE GÖDEL

Até agora venho discutindo a viagem no tempo para a frente, para o futuro. E para trás, para o passado? Isso é muito mais problemático. Em 1948, Kurt Gödel, do Instituto de Estudos Avançados de Princeton, apresentou uma solução para as equações dos campos gravitacionais de Einstein que descrevia um universo em rotação. Num universo desse tipo, um astronauta poderia chegar ao seu passado atravessando o espaço. Isso ocorreria devido à maneira como a gravidade afeta a luz. A rotação do universo puxaria a luz (e assim as relações causais entre os objetos) consigo, em seu movimento. Um objeto material viajaria no espaço num círculo fechado, que seria também um círculo fechado no tempo. A solução de Gödel foi considerada apenas uma curiosidade matemática, pois, em nenhum momento, as observações levaram à conclusão de que o universo gira em torno de si. Mas seu resultado serviu para mostrar que voltar atrás no tempo não é algo proibido pela teoria da relatividade.
VIAGEM PELO BURACO DE MINHOCA


Uma Máquina do Tempo de Buraco de Minhoca em Três Etapas, Nenhuma das Quais Muito Fácil

1 - Encontre ou monte um buraco de minhoca, um túnel que liga dois pontos no espaço. Pode ser que buracos de minhoca de grande porte existam no espaço profundo, herança do Big-Bang. Se não encontrar nenhum, vamos ter que nos contentar com buracos de minhoca subatômicos, ou naturais (de acordo com algumas teorias, eles aparecem e desaparecem rapidamente em nosso redor) ou artificiais (produzidos por aceleradores de partículas). Esses buracos de minhoca pequeninos teriam de ser aumentados até atingir proporções úteis, talvez pelo uso de campos de energia como o que fez o espaço inflar logo depois do Big-Bang.

2 - Estabilize o buraco de minhoca. Uma infusão de energia negativa, produzida por meios quânticos como o chamado efeito Casimir, permitiria a passagem segura de um sinal ou um objeto através do buraco de minhoca. A energia negativa controla a tendência do buraco de minhoca de chegar a um ponto de densidade infinita ou quase infinita. Em resumo, impede que o buraco de minhoca se transforme em buraco negro.

3 - Transporte o buraco de minhoca. Uma espaçonave, com tecnologia muito avançada, separaria as aberturas do buraco de minhoca. Uma abertura seria colocada junto à superfície de uma estrela de nêutrons, uma estrela de altíssima densidade, com campo gravitacional muito forte. A gravidade intensa faz com que o tempo corra mais devagar. Como o tempo corre mais depressa na outra abertura, os dois extremos do buraco de minhoca ficam separados não só no espaço, mas também no tempo.
VIAGEM PELO BURACO DE MINHOCA
Há outros cenários capazes de visualizar situações que permitiriam viagens ao passado. Em 1974, por exemplo, Frank Tipler, da Universidade Tulane, calculou que um cilindro maciço, infinitamente comprido, girando em torno do seu eixo em velocidades próximas à da luz, permitiria visões do passado, mais uma vez porque a luz seria puxada em torno do cilindro, formando um círculo. Em 1991, Richard Gott, da Universidade Princeton, sugeriu que as cordas cósmicas - estruturas que de acordo com os cosmólogos foram criadas nos estágios iniciais do Big-Bang - poderiam produzir efeitos semelhantes. O cenário mais próximo da realidade para a existência de uma máquina no tempo surgiu, porém, em meados da década de 80, com base no conceito do buraco de minhoca.

Os buracos de minhoca são comuns nos livros de ficção científica, onde aparecem também com o nome de portões espaciais. Trata-se de atalhos entre dois pontos separados no espaço. Se você entrar em um buraco de minhoca, sairá rapidamente no outro lado da galáxia. Os buracos de minhoca estão de acordo com a teoria da relatividade geral, uma vez que a gravidade não distorce só o tempo, mas também o espaço. A teoria permite a existência de análogos a túneis ligando dois pontos no espaço. Os matemáticos chamam esses tipos de espaço de multiplamente conectados. Como um túnel numa montanha pode ser mais curto que a estrada na superfície, um buraco de minhoca pode ser mais curto que um percurso pelo espaço normal.
TRANSFORMANDO O PASSADO


O paradoxo da mãe, formulado às vezes usando outras relações familiares, surge quando uma pessoa ou objeto pode voltar atrás no tempo e alterar o passado. Uma versão mais simples é apresentada com bolas de bilhar. Uma bola de bilhar passa através de uma máquina do tempo de buraco de minhoca. Ao sair da abertura, atinge ela mesma, como era no passado, impedindo, assim, sua entrada no buraco de minhoca.

A Mãe de Todos os Paradoxos

A solução do paradoxo vem de um fato simples: a bola de bilhar não pode fazer nada que não esteja de acordo com a lógica ou com as leis da física. Não pode passar pelo buraco de minhoca de uma maneira capaz de impedir a própria passagem pelo buraco de minhoca. Nada impede, porém, que passe pelo buraco de minhoca numa infinidade de outras maneiras.

O buraco de minhoca foi usado como recurso de ficção por Carl Sagan em seu romance Contato, publicado em 1985. Incentivados por Sagan, Kip Thorne e seus colegas do Instituto de Tecnologia da Califórnia se dedicaram ao trabalho de verificar se os buracos de minhoca seriam possíveis pelas leis da física. Partiram da idéia de que o buraco de minhoca lembraria o buraco negro, por ser um objeto com imensa gravidade. Mas, ao contrário do buraco negro, que oferece apenas uma viagem só de ida para o nada, o buraco de minhoca teria saída, além de entrada.
MATÉRIA EXÓTICA

Para que o buraco de minhoca permita a passagem de um objeto, deve conter o que Thorne chamou de matéria exótica. Na prática, trata-se de algo que gere antigravidade, para combater a tendência natural de um sistema maciço para implodir, transformando-se num buraco negro. A antigravidade, ou repulsão gravitacional, pode ser gerada por energia ou pressão negativas. Sabe-se que existem estados de energia negativa em certos sistemas quânticos. Isso sugere que a matéria exótica de Thorne não é inteiramente afastada pelas leis da física, embora não seja claro se é possível juntar material antigravitacional suficiente para estabilizar um buraco de minhoca.

Logo Thorne e seus colegas chegaram à conclusão de que se um buraco de minhoca pode ser criado, pode também ser transformado rapidamente numa máquina do tempo.

Para adaptar o buraco de minhoca às viagens pelo tempo, uma de suas aberturas poderia ser rebocada até uma estrela de nêutrons e colocada perto da superfície. A gravidade da estrela tornaria o tempo mais lento perto da abertura, fazendo com que uma diferença de tempo entre as duas aberturas fosse aumentando gradualmente. Se as duas aberturas fossem estacionadas, essa diferença de tempo seria mantida.

Vamos supor que a diferença fosse de dez anos. Uma pessoa que passasse pelo buraco de minhoca numa direção sairia dez anos no futuro. Se passasse na outra direção, sairia dez anos no passado. Se voltasse ao ponto de partida em alta velocidade, através do espaço normal, a segunda pessoa poderia voltar para casa antes mesmo de ter partido. Em outros termos, um círculo fechado no espaço poderia transformar-se num círculo fechado no tempo. A única restrição seria a de que a pessoa não poderia voltar a uma época anterior à construção do buraco de minhoca.


Um problema no caminho da construção de um buraco de minhoca como máquina do tempo é, em primeiro lugar, a criação do próprio buraco de minhoca. É possível que o espaço esteja cheio dessas estruturas, criadas naturalmente como relíquias do Big-Bang. Se for esse o caso, uma supercivilização pode descobrir e tomar conta de uma delas. Outra possibilidade é a de que os buracos de minhoca apareçam em pequenas escalas, o chamado comprimento Planck, cerca de 1020a potência, menores que um núcleo atômico. Um buraco de minhoca desse tamanho pode ser imobilizado por um pulso de energia e, depois, aumentado até chegar a dimensões em que possa ser usado.

CENSURADO

Partindo do princípio de que os problemas de engenharia possam ser superados, a construção de uma máquina do tempo abriria uma caixa de Pandora de paradoxos causais. Vamos imaginar que um viajante do tempo vá ao passado e mate sua mãe quando ela era ainda menina. Que sentido tirar disso? Se a menina morre, não pode crescer e dar à luz ao viajante. Mas, se o viajante não nasceu, como pode voltar ao passado e matar a mãe?

Paradoxos deste tipo só surgem quando o viajante tenta mudar o passado, o que é obviamente impossível. Mas isso não impede que alguém se torne parte do passado. Vamos supor que o viajante volte ao passado para salvar a menina que se tornaria sua mãe de ser assassinada. Este círculo causal é coerente e não representa um paradoxo. A coerência causal pode impor restrições ao que um viajante no tempo pode fazer no passado. Mas não impede as viagens no tempo.


Mas, mesmo sem paradoxos, uma viagem no tempo pode ter conseqüências estranhas. Vamos imaginar uma pessoa que dê um salto de um ano para o futuro e lê um artigo sobre um novo teorema matemático numa edição futura de SCIENTIFIC AMERICAN. Toma nota dos detalhes, volta ao seu tempo e ensina o teorema a um aluno, que então escreve um artigo sobre o assunto para a revista. Surge a pergunta: de onde veio a informação sobre o teorema? Não foi do viajante, que apenas leu sobre o assunto, e também não foi do aluno, que recebeu a informação do viajante. A informação parece ter surgido do nada.
As possíveis conseqüências das viagens no tempo levam cientistas a rejeitar em princípio a própria idéia desses deslocamentos. Stephen Hawking, da Universidade de Cambridge, propôs uma "conjectura de proteção da cronologia", com mais ou menos esse objetivo. Como a teoria da relatividade permite as viagens ao passado, a proteção da cronologia exigiria a presença de outro fator para impedir sua realização. A resposta pode estar em processos quânticos. Numa máquina do tempo, partículas saltariam para seu próprio passado. Cálculos sugerem que isso criaria distúrbios tão grandes que apareceria uma erupção súbita de energia, capaz de destruir o próprio buraco de minhoca.
Mas a proteção da cronologia continua a ser apenas uma conjectura. Em teoria, as viagens no tempo são possíveis. A solução definitiva do assunto pode ter que esperar a união com sucesso da mecânica quântica com a gravitação, talvez por meio de uma teoria como a teoria das cordas ou sua extensão, a chamada teoria-M. Podemos imaginar que a próxima geração de aceleradores de partículas será capaz de criar buracos de minhoca subatômicos. Eles poderiam sobreviver por tempo suficiente para que partículas próximas executem rápidos círculos causais. Isso estaria muito longe do que Wells imaginou como uma máquina do tempo. Mas já seria suficiente para transformar definitivamente nosso panorama da realidade física.
Resumo
- Viajar no tempo para o futuro é fácil. Se você viajar numa velocidade próxima à da luz ou permanecer num campo gravitacional muito intenso, o tempo vai passar mais devagar para você que para as outras pessoas. Quando você voltar à situação normal, estará no futuro.

- Viajar para o passado é mais complicado. Pela teoria da relatividade, isso é possível em certas configurações de espaço-tempo: um universo em rotação, um cilindro em rotação e num buraco de minhoca - um túnel que atravessa o espaço e o tempo.

Fonte: Sci Am BR

Marcadores: , , , ,

Sábado, 20 de Junho de 2009

Relatividade geral

Em Física, a relatividade geral é a generalização da Teoria da gravitação de Newton, publicada em 1916 por Albert Einstein e cuja base matemática foi desenvolvida pelo cientista francês Henri Poincaré. A nova teoria leva em consideração as ideias descobertas na Relatividade restrita sobre o espaço e o tempo e propõe a generalização do princípio da relatividade do movimento de referenciais em movimento uniforme para a relatividade do movimento mesmo entre referenciais em movimento acelerado. Esta generalização tem implicações profundas no nosso conhecimento do espaço-tempo, levando, entre outras conclusões, à de que a matéria (energia) curva o espaço e o tempo à sua volta. Isto é, a gravitação é um efeito da geometria do espaço-tempo.

Marcadores: , , , , ,

Sexta-feira, 5 de Junho de 2009

Paradoxo EPR

Na mecânica quântica, o paradoxo EPR ou Paradoxo de Einstein-Podolsky-Rosen é um experimento mental que demonstra que o resultado de uma medição realizada em uma parte do sistema quântico pode ter um efeito instantâneo no resultado de uma medição realizada em outra parte, independentemente da distância que separa as duas partes. Isto vai de encontro aos princípios da relatividade especial, que estabelece que a informação não pode ser transmitida mais rapidamente que a velocidade da luz. "EPR" vem das iniciais de Albert Einstein, Boris Podolsky, e Nathan Rosen, que apresentaram este experimento mental em um trabalho em 1935 que buscava demonstrar que a mecânica quântica não é uma teoria física completa. É algumas vezes denominado como paradoxo EPRB devido a David Bohm, que converteu o experimento mental inicial em algo próximo a um experimento viável.

O EPR é um paradoxo no seguinte sentido: se se tomar a mecânica quântica e a ela adicionar uma condição aparentemente razoável (tal como "localidade", "realismo" ou "inteireza"), obtém-se uma contradição. Porém, a mecânica quântica por si só não apresenta nenhuma inconsistência interna, nem — como isto poderia sugerir — contradiz a teoria relativística. Como um resultado de desenvolvimentos teóricos e experimentais seguintes ao trabalho original da EPR, a maioria dos físicos atuais concorda que o paradoxo EPR é um exemplo de como a mecânica quântica viola o ponto de vista esperado na clássica, e não como uma indicação de que a mecânica quântica seja falha e sim inaplicável ao meio.


Descrição do paradoxo

O paradoxo EPR apóia-se em um fenômeno predito pela mecânica quântica e conhecido como entrelaçamento quântico, que mostra que medições realizadas em partes separadas de um sistema quântico influenciam-se mutuamente. Este efeito é atualmente conhecido como "comportamento não local" (ou, coloquialmente, como "estranheza quântica"). De forma a ilustrar isto, considere a seguinte versão simplificada do experimento mental EPR devido a Bohm.

Medições em um estado de entrelaçamento

Tem-se uma fonte emissora de pares de elétrons, com um elétron enviado para o destino A, onde existe uma observadora chamada Alice, e outro enviado para o destino B, onde existe um observador chamado Bob. De acordo com a mecânica quântica, podemos arranjar nossa fonte de forma tal que cada par de elétrons emitido ocupe um estado quântico conhecido como spin singlet. Isto pode ser visto como uma superposição quântica de dois estados; sejam eles I e II. No estado I, o elétron A tem spin apontado para cima ao longo do eixo z (+z) e o elétron B tem seu spin apontando para baixo ao longo do mesmo eixo (-z). No estado II, o elétron A tem spin -z e o elétron B, +z. Portanto, é impossível associar qualquer um dos elétrons em um spin singlet, com um estado definido de spin. Os elétrons estão, portanto, no chamado entrelaçamento.

Alice mede neste momento o spin no eixo z. Ela pode obter duas possíveis respostas: +z ou -z. Suponha que ela obteve +z. De acordo com a mecânica quântica, o estado quântico do sistema colapsou para o estado I. (Diferentes interpretações da mecânica quântica têm diferentes formas de dizer isto, mas o resultado básico é o mesmo). O estado quântico determina a probabilidade das respostas de qualquer medição realizada no sistema. Neste caso, se Bob a seguir medir o spin no eixo z, ele obterá -z com 100% de certeza. Similarmente, se Alice obtiver -z, Bob terá +z.

Não há, certamente, nada de especial quanto à escolha do eixo z. Por exemplo, suponha que Alice e Bob agora decidam medir o spin no eixo x. De acordo com a mecânica quântica, o estado do spin singlet deve estar exprimido igualmente bem como uma superposição dos estados de spin orientados na direção x. Chamemos tais estados de Ia e IIa. No estado Ia, o elétron de Alice tem o spin +x e o de Bob, -x. No estado IIa, o elétron de Alice tem spin -x e o de Bob, +x. Portanto, se Alice mede +x, o sistema colapsa para Ia e Bob obterá -x. Por outro lado, se Alice medir -x, o sistema colapsa para IIa e Bob obterá +x.

Em mecânica quântica, o spin x e o spin z são "observáveis incompatíveis", que significa que há um principio da incerteza de Heisenberg operando entre eles: um estado quântico não pode possuir um valor definido para ambas as variáveis. Suponha que Alice meça o spin z e obtenha +z, com o estado quântico colapsando para o estado I. Agora, ao invés de medir o spin z também, suponha que Bob meça o spin x. De acordo com a mecânica quântica, quando o sistema está no estado I, a medição do spin x de Bob terá uma probabilidade de 50% de produzir +x e 50% de -x. Além disso, é fundamentalmente impossível predizer qual resultado será obtido até o momento que Bob realize a medição.

Incidentalmente, embora tenhamos usado o spin como exemplo, muitos tipos de quantidades físicas — que a mecânica quântica denomina como "observáveis" — podem ser usados para produzir entrelaçamento quântico. O artigo original de EPR usou o momento como observável. Experimentos atuais abordando o contexto de EPR frequentemente usam a polarização de fótons, porque são experiências mais fáceis de se preparar e medir.

Realidade e integridade

Introduziremos agora dois novos conceitos usados por Einstein, Podolsky, e Rosen, que são cruciais em seu ataque à mecânica quântica: (i) os elementos da realidade física e (ii) a integridade de uma teoria física.

Os autores não se referem diretamente ao significado filosófico de um "elemento da realidade física". Ao invés disso, assumem que se o valor de qualquer quantidade física de um sistema pode ser predito com absoluta certeza antes de se realizar uma medição ou, em outras palavras, perturbando-o, então tal valor corresponde a um elemento da realidade física. Note que o oposto não é necessariamente verdadeiro; poderia haver outros caminhos para existir elementos da realidade física, mas isto não afeta o argumento.

A seguir, EPR definiu uma "teoria física completa" como aquela na qual cada elemento da realidade física tem relevância. O objetivo deste artigo era mostrar, usando estas duas definições, que a mecânica quântica não é uma teoria física completa.

Vejamos como estes conceitos se aplicam para o experimento mental acima. Suponha que Alice decida medir o valor do spin no eixo z (chamemo-no de spin z.) Depois de Alice realizar sua medição, o spin z do elétron de Bob é definitivamente conhecido, de forma que torna-se um elemento da realidade física. De modo similar, se Alice decide medir o spin no eixo x, o spin x do elétron de Bob torna-se um elemento da realidade física logo após a medição por Alice.

Vimos que um estado quântico não pode possuir um valor definido para ambos eixos, x e z. Se a mecânica quântica é uma teoria física completa no sentido dado acima, os spin x e z não podem ser elementos da mesma realidade ao mesmo tempo. Isto significa que a decisão de Alice — de escolher se faz a medição no eixo x ou z — tem um efeito instantâneo nos elementos da realidade física na localidade de Bob. Contudo, isto viola outro princípio, o da localidade.

Localidade no experimento EPR

O princípio da localidade estabelece que processos físicos ocorrendo em um determinado lugar não devem ter um efeito imediato em elementos da realidade em outro local. À primeira vista, isto parece ser uma presunção aceitável, já que parece ser uma conseqüência da relatividade especial, que estabelece que a informação nunca pode ser transmitida mais rapidamente que a velocidade da luz sem violar o princípio da causalidade. É uma crença geral que qualquer teoria que viole o princípio da causalidade deve possuir uma inconsistência interna.

Ou seja, a mecânica quântica viola o princípio da localidade, mas não o princípio da causalidade. A causalidade é preservada porque não há forma de Alice transmitir mensagens (isto é, informação) a Bob pela interferência na escolha do eixo. Qualquer que seja o eixo que ela use, a probabilidade é de 50% de se obter "+" e 50% de se obter "-", de forma completamente aleatória; de acordo com a mecânica quântica, é fundamentalmente impossível para ela influenciar o resultado que ela obterá. Além disso, Bob é somente capaz de realizar sua medição uma única vez: há uma propriedade fundamental da mecânica quântica, conhecida como o "teorema anticlonagem", que torna impossível a Bob fazer um milhão de cópias do elétron por ele recebido, realizar uma medição de spin em cada elétron, e estudar a distribuição estatística dos resultados. Portanto, na única medição que lhe é permitido fazer, há uma probabilidade de 50% de obter "+" e 50% de "-", independente se o eixo escolhido está alinhado de acordo com o de Alice.

Porém, o princípio da localidade apóia-se muito na intuição, e Einstein, Podolsky e Rosen não puderam abandoná-la. Einstein brincou, dizendo que as predições na mecânica quântica eram "estranhas ações a distância". A conclusão que eles esboçaram era a de que a mecânica quântica não é uma teoria completa.

Deve-se notar que a palavra localidade tem vários significados na Física. Por exemplo, na teoria quântica de campo, "localidade" significa que os campos quânticos em diferentes pontos no espaço não interagem entre si. Porém, teorias de campo quântico que são "locais" neste sentido violam o princípio da localidade como definido por EPR.

Resolvendo o paradoxo

Variáveis ocultas

Há vários possíveis caminhos para se resolver o paradoxo EPR. Um deles, sugerido por EPR, é que a mecânica quântica, a despeito do seu sucesso em uma ampla variedade de contextos experimentais, é ainda uma teoria incompleta. Em outras palavras, há ainda uma teoria natural a ser desvendada, à qual a mecânica quântica age no papel de uma aproximação estatística (uma excelente aproximação, sem dúvida). Diferente da mecânica quântica, esta teoria mais completa conteria variáveis correspondentes a todos os "elementos da realidade". Deve haver algum mecanismo desconhecido atuando nestas variáveis de modo a ocasionar os efeitos observados de "não-comutação dos observáveis quânticos", isto é, o princípio da incerteza de Heisenberg. Tal teoria é conhecida como teoria das variáveis ocultas.

Para ilustrar esta idéia, podemos formular uma teoria de variável oculta bem simples para o experimento mental anterior. Supõe-se que o estado do spin singlet emitido pela fonte é na verdade uma descrição aproximada do "verdadeiro" estado físico, com valores definidos para o spin z e o spin x. Neste estado "verdadeiro", o elétron que vai para Bob sempre tem valor de spin oposto ao do elétron que vai para Alice, mas, por outro lado, os valores são completamente aleatórios. Por exemplo, o primeiro par emitido pela fonte poderia ser "(+z, -x) para Alice e (-z, +x) para Bob", o próximo par "(-z, -x) para Alice e (+z, +x) para Bob", e assim por diante. Dessa forma, se o eixo de medição de Bob estiver alinhado com o de Alice, ele necessariamente obterá sempre o oposto daquilo que Alice obtiver; por outro lado, ele terá "+" e "-" com a mesma probabilidade.

Assumindo que restrinjamo-nos a medir nos eixos z e x, a teoria de variáveis ocultas é experimentalmente indistinguível da mecânica quântica. Na realidade, certamente, há um (incontável) número de eixos nos quais Alice e Bob podem realizar suas medições, de forma que haverá infinito número de variáveis ocultas independentes! Contudo, isto não é um problema sério; apenas formulamos uma teoria de variáveis ocultas muito simplista; uma teoria mais sofisticada poderia "consertá-la". Ou seja, ainda há um grande desafio por vir à idéia de variáveis ocultas.

Desigualdade de Bell

Em 1964, John Bell mostrou que as predições da mecânica quântica no experimento mental de EPR são sempre ligeiramente diferentes das predições de uma grande parte das teorias de variáveis ocultas. Grosseiramente falando, a mecânica quântica prediz uma correlação estatística ligeiramente mais forte entre os resultados obtidos em diferentes eixos do que o obtido pelas teorias de variáveis ocultas. Estas diferenças, expressas através de relações de desigualdades conhecidas como "desigualdades de Bell", são em princípio detectáveis experimentalmente. Para uma análise mais detalhada deste estudo, veja teorema de Bell.

Depois da publicação do trabalho de Bell, inúmeros experimentos foram idealizados para testar as desigualdades de Bell. (Como mencionado acima, estes experimentos geralmente baseiam-se na medição da polarização de fótons). Todos os experimentos feitos até hoje encontraram comportamento similar às predições obtidas da mecânica quântica padrão.

Porém, este campo ainda não está completamente definido. Antes de mais nada, o teorema de Bell não se aplica a todas as possíveis teorias "realistas". É possível construir uma teoria que escape de suas implicações e que são, portanto, indistinguíveis da mecânica quântica; porém, estas teorias são geralmente não-locais — parecem violar a casualidade e as regras da relatividade especial. Alguns estudiosos neste campo têm tentado formular teorias de variáveis ocultas que exploram brechas nos experimentos atuais, tais como brechas nas hipóteses feitas para a interpretação dos dados experimentais. Todavia, ninguém ainda conseguiu formular uma teoria realista localmente que possa reproduzir todos os resultados da mecânica quântica.

Implicações para a mecânica quântica

A maioria dos físicos atualmente acredita que a mecânica quântica é correta, e que o paradoxo EPR é somente um "paradoxo" porque a intuição clássica não corresponde à realidade física. Várias conclusões diferentes podem ser esboçadas a partir desta, dependendo de qual interpretação de mecânica quântica se use. Na velha interpretação de Copenhague, conclui-se que o principio da localidade não se aplica e que realmente ocorrem colapsos da função de onda. Na interpretação de muitos mundos, a localidade é preservada, e os efeitos da medição surgem da separação dos observadores em diferentes "históricos".

O paradoxo EPR aprofundou a nossa compreensão da mecânica quântica pela exposição de características não-clássicas do processo de medição. Antes da publicação do paradoxo EPR, uma medição era freqüentemente visualizada como uma perturbação física que afetava diretamente o sistema sob medição. Por exemplo, quando se media a posição de um elétron, imaginava-se o disparo de uma luz nele, que afetava o elétron e que produzia incertezas quanto a sua posição. Tais explicações, que ainda são encontradas em explicações populares de mecânica quântica, foram revisadas pelo paradoxo EPR, o qual mostra que uma "medição" pode ser realizada em uma partícula sem perturbá-la diretamente, pela realização da medição em uma partícula entrelaçada distante.

Tecnologias baseadas no entrelaçamento quântico estão atualmente em desenvolvimento. Na criptografia quântica, partículas entrelaçadas são usadas para transmitir sinais que não podem ser vazados sem deixar traços. Na computação quântica, partículas entrelaçadas são usadas para realizar cálculos em paralelo em computadores, o que permite que certos cálculos sejam realizados mais rapidamente do que um computador clássico jamais poderia fazer.

Marcadores: , , ,

Entrelaçamento quântico

O entrelaçamento quântico ou emaranhamento quântico é um fenômeno da mecânica quântica que permite que dois ou mais objetos estejam de alguma forma tão ligados que um objeto não possa ser corretamente descrito sem que a sua contra-parte seja mencionada - mesmo que os objetos possam estar espacialmente separados. Isso leva a correlações muito fortes entre as propriedades físicas observáveis dos diversos sub-sistemas.

Essas fortes correlações fazem com que as medidas realizadas num sistema pareçam estar a influenciar instantaneamente outros sistemas que estão emaranhados com ele, e sugerem que alguma influência estaria a propagar-se instantaneamente entre os sistemas, apesar da separação entre eles. Mas o emaranhamento quântico não permite a transmissão de informação a uma velocidade superior à da velocidade da luz, porque nenhuma informação útil pode ser transmitida desse modo. Só é possível a transmissão de informação usando um conjunto de estados emaranhados em conjugação com um canal de informação clássico - aquilo a que se chama o teletransporte quântico.

O emaranhamento quântico é a base para tecnologias emergentes, tais como computação quântica, criptografia quântica e tem sido usado para experiências como o teletransporte quântico. Ao mesmo tempo, isto produz alguns dos aspectos teóricos e filosóficos mais perturbadores da teoria, já que as correlações preditas pela mecânica quântica são inconsistentes com o princípio intuitivo do realismo local, que diz que cada partícula deve ter um estado bem definido, sem que seja necessário fazer referência a outros sistemas distantes. Os diferentes enfoques sobre o que está a acontecer no processo do entrelaçamento quântico dão origem a diferentes interpretações da mecânica quântica.

Marcadores: , ,

Teletransporte quântico

Teletransporte quântico é uma tecnologia que permite o teletransporte de informação, como o spin ou a polarização (não existe transporte de energia ou de matéria) por meios exclusivamente quânticos, que independem de meios de transmissão.

Proposto pela primeira vez em 1993 por físicos teóricos que trabalhavam para a empresa IBM, utiliza um efeito da mecânica quântica chamado de entrelaçamento quântico, pelo qual partículas subatômicas que passam por processos quânticos mantêm um tipo de associação intrínseca mesmo depois de separadas, à semelhança do fenômeno de ressonância, mas teoricamente independente da distância.

O exemplo mais citado é o de duas partículas criadas conjuntamente que assumem spins opostos, e ao se modificar o spin de uma, o spin da outra também se modifica, mesmo que elas estejam separadas.

A tecnologia tenta usar esse efeito para telecomunicações ou armazenamento de informação num possível computador quântico.

Marcadores: , , ,

Teletransporte

O teletransporte ou teleporte é o processo de moção de objetos de um lugar para outro, em curto intervalo de tempo, sem a passagem pelo espaço intermediário.

O teletransporte ainda é restrito ao campo de ficção científica e da ciência especulativa. É importante ressaltar que teletransporte como definido aqui e na ficção científica, não tem relação com teletransporte quântico, um termo técnico-científico utilizado na Física quântica para denotar transporte de informação (e não criação e destruição de matéria).
Índice


Introdução

Desde que a roda foi inventada, há mais de 5 mil anos, as pessoas têm criado novas maneiras de viajar mais rápido de um lugar para o outro. A carruagem, a bicicleta, o automóvel, o avião e o foguete foram inventados para diminuir o tempo que se gasta para chegar aos destinos. Mesmo assim, todas essas formas de transporte têm o mesmo defeito e elas requerem que você percorra uma distância física, o que pode levar de alguns minutos a muitas horas, dependendo dos pontos iniciais e finais.

Mas, e se existisse uma maneira de ir da sua casa ao supermercado sem ter que usar um carro ou do seu quintal para a estação espacial internacional sem ter de usar uma espaçonave? Existem cientistas trabalhando neste tipo de viagem. Ela combina propriedades das telecomunicações e dos transportes para criar um sistema chamado teletransporte. Neste artigo, você vai conhecer experimentos que conseguiram teletransportar fótons. Você também vai descobrir como poderemos usar o teletransporte para viajar a qualquer lugar e a qualquer hora.

O que é o teletransporte?

O teletransporte envolve a desmaterialização de um objeto em um ponto e o envio das configurações atômicas deste objeto para outra localidade, onde ele será reconstruído. Isso significa que o tempo e o espaço pode ser eliminado na viagem. Podemos nos transportar para qualquer lugar de forma instantânea, sem precisar percorrer uma distância física.

Muitos já conhecem a idéia do teletransporte e de outras tecnologias futuristas através da série de televisão Star Trek , baseada em contos escritos por Gene Roddenberry. Os espectadores ficaram maravilhados com as viagens interestelares do Capitão Kirk, Sr. Spock e Dr. McCoy, e como eles se teletransportavam pelo universo.

Em 1993, a idéia do teletransporte saiu do campo da ficção científica e entrou para o mundo da possibilidade teórica. O físico Charles Bennett e um grupo de pesquisadores da IBM (em inglês) confirmaram que o teletransporte quântico era possível, mas somente se o objeto transportado fosse destruído. Esta revelação, anunciada em março de 1993 por Bennet, no encontro anual da American Physical Society (em inglês), aconteceu um pouco antes da publicação do relatório das suas descobertas na edição de 29 de março de 1993, da Physical Review Letters (em inglês). Desde aquela época, experiências utilizando fótons mostraram que o teletransporte quântico era, de fato, possível.

Teletransporte: experimentos recentes

Em 1998, físicos do California Institute of Technology (Caltech) (em inglês), junto com dois grupos europeus, transformam as idéias da IBM em realidade ao transportar com sucesso um fóton, uma partícula de energia que carrega luz. O grupo Caltech conseguiu ler a estrutura atômica de um fóton e enviou esta informação em 1 m de cabo coaxial para criar uma réplica deste fóton. Como tinha sido previsto, o fóton original não existia mais depois que a réplica foi feita.

Durante o experimento, o grupo Caltech conseguiu contornar o princípio da incerteza de Heisenberg, a principal barreira para o teletransporte de objetos maiores que um fóton. Este princípio diz que você não pode saber, simultaneamente, o local e a velocidade de uma partícula. Mas se você não sabe a posição da partícula, como pode teletransportá-la? Para teletransportar um fóton sem violar o princípio de Heisenber, os físicos da Caltech utilizaram um fenômeno conhecido como entrelaçamento. No entrelaçamento, pelo menos três fótons são necessários para realizar o teletransporte quântico.

* Fóton A: o fóton a ser teletransportado
* Fóton B: o fóton de transporte
* Fóton C: o fóton entrelaçado com o fóton B

Se os pesquisadores tentassem olhar o fóton A de perto sem o entrelaçamento, eles poderiam provocar uma colisão e, conseqüentemente, modificá-lo. Ao entrelaçar os fótons B e C, os pesquisadores podem extrair informação sobre o fóton A. O restante da informação seria transferida para o fóton B por meio do entrelaçamento e depois para o fóton C. Quando os pesquisadores aplicam a informação do fóton A no fóton C, eles podem criar uma réplica exata do fóton A, porém, este fóton deixa de existir da maneira como existia antes da informação ser enviada para o fóton C.

Em outras palavras, quando o capitão Kirk se teletransporta para um planeta alienígena, uma análise da sua estrutura atômica passa pela sala de transporte para o destino desejado, onde a réplica do Kirk é criada e o original é destruído.

Um experimento de sucesso foi realizado na Universidade Nacional da Austrália, quando os pesquisadores teletransportaram um raio laser.

O mais recente experimento de sucesso em teletransporte ocorreu em 4 de outubro de 2006, no Instituto Niels Bohr, em Copenhagen, Dinamarca. O Dr Eugene Polzik e sua equipe teletransportaram informações armazenadas em um raio laser, em uma nuvem de átomos. De acordo com Polzik: "é um passo adiante, pois pela primeira vez envolveu o teletransporte entre luz e matéria, dois objetos distintos. Um é o portador da informação e o outro é o meio de armazenamento" (CBC). A informação foi teletransportada por 0,5m.

A idéia de criar réplicas e destruir originais ainda não é atrativa para as pessoas, mas o teletransporte quântico pode ajudar a computação quântica. Estes experimentos com os fótons são importantes para o desenvolvimento das redes que distribuem informação quântica. O professor Samuel Braunstein, da universidade de Wales, em Bangor, criou uma rede chamada "internet quântica". Esta tecnologia pode ser usada um dia para construir um computador quântico que tem taxas de transmissão de dados muitas vezes mais rápidas que o computador mais moderno.

Teletransporte de pessoas

Ainda estamos longe do desenvolvimento de uma máquina de teletransporte como a que aparece na série Star Trek. As leis da física podem até impedir que exista um teletransportador que envie uma pessoa, instantaneamente, para outro lugar. Isso precisaria ser feito na velocidade da luz.

Para uma pessoa ser teletransportada, uma máquina teria que ser construída para identificar e analisar todos os 10^28 átomos que formam um corpo humano, o que significa mais de um trilhão de átomos. Esta máquina teria que enviar essa informação para outro lugar, onde o corpo da pessoa seria reconstruído com precisão. As moléculas não poderiam estar 1 mm fora do lugar, já que isso poderia deixar a pessoa com graves defeitos neurológicos ou fisiológicos.

Nos episódios de Star Trek (Jornada na estrelas) e nas outras séries que surgiram depois, o teletransporte era feito por uma máquina chamada transportador. Esta máquina era, basicamente, uma plataforma onde ficavam os personagens, enquanto Scotty operava os controles. A máquina analisava cada átomo da pessoa na plataforma e usava uma onda transportadora para transmitir estas moléculas para onde a tripulação quisesse ir. Os telespectadores testemunhavam o Capitão Kirk e sua tripulação desaparecerem e reaparecerem instantamente em um planeta distante.

Se essa máquina existisse, seria improvável que a pessoa transportada fosse realmente "transportada". Funcionaria mais ou menos como uma aparelho de fax. Uma réplica da pessoa apareceria do outro lado da transmissão. Mas o que aconteceria com o original? Uma teoria sugere que o teletransporte deveria combinar clonagem genética com digitalização.

Nesta clonagem biodigital, os tele-viajantes teriam que morrer. Seus corpos e mentes originais deixariam de existir. A sua estrutura atômica seria copiada para outra localidade e a digitalização recriaria as memórias, emoções, esperanças e sonhos dos viajantes. Então eles ainda iriam existir, mas em um novo corpo, com a mesma estrutura atômica do corpo original e programado com a mesma informação.

Como todas as outras tecnologias, os cientistas continuam a melhorar a idéia do teletransporte até que se torne possível utilizá-la sem métodos tão agressivos. Um dia, um dos seus descendentes vai terminar um dia de trabalho num escritório espacial situado a milhões de anos-luz da Terra e falar para o seu relógio de pulso transportá-lo para casa, no planeta X. Quando ele terminar de pronunciar estas palavras, já vai estar sentado à mesa de jantar.

Fonte do texto: Wikipédia (com alterações)

Marcadores: , , ,